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Introduction

Random walk

Let S, = So + X1 + ...+ X, be a zero mean non-degenerate
random walk in R with i.i.d. increments Xi, X5,... and the
starting point Sy that is a r.v. independent of the increments.




Introduction

Random walk

Let S, = So + X1 + ...+ X, be a zero mean non-degenerate
random walk in R with i.i.d. increments Xi, X5,... and the
starting point Sy that is a r.v. independent of the increments.

The Markov chain of overshoots
Define the crossing times T, of the zero level: Ty := 0 and

Tn+1 = min{k > T,, : Sk—l < 0, Sk > 0 or Sk—l > 0, Sk < 0}
Now, define the corresponding overshoots:

0, := 57, n>0.

The sequence (O,),>0 is @ Markov chain starting at Oy = Sp.
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The problem

@ Does O have a stationary distribution? Is it unique?

@ Do O, stabilise to this distribution in the sense that the
laws P(O, € -|Sp = x) converge to this distribution Vx?

@ What is the rate of this convergence?




The problem

@ Does O have a stationary distribution? Is it unique?

@ Do O, stabilise to this distribution in the sense that the
laws P(O, € -|Sp = x) converge to this distribution Vx?
@ What is the rate of this convergence?

Overshoots at up-crossings

| A\

Since O has a periodic structure, it suffices to consider the
Markov chain OI := Oy, of the overshoots at up-crossing times
T! = T,,, starting at Sop > 0.
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Stationary distribution

Arithmetic vs non-arithmetic

The random walk S, is called non-arithmetic if P(X; € dZ) < 1

for any d. All other walks are called arithmetic. An arithmetic
RW is d-arithmetic iff d = max{d’ > 0: P(X; € d'Z) = 1}.

State space

Define the state space X, of the walk as [0, 00) in the non-
arithmetic case and as {0, d,2d, ...} in the d-arithmetic case.
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The random walk S, is called non-arithmetic if P(X; € dZ) < 1
for any d. All other walks are called arithmetic. An arithmetic
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State space

Define the state space X, of the walk as [0, 00) in the non-
arithmetic case and as {0, d,2d, ...} in the d-arithmetic case.

Theorem 1

Let A\, be either Lebesgue or d - # (counting) measure on X,
respectively. Then

2
E|X:|

is a stationary distribution for the chain O]

i (dx) '= =——=P(X1 > x)A,(dx), xe X,




Heuristics

Assume EX? = 1 and that S, is aperiodic integer-valued.

Let LT :=max{i > 0: T; < n} be the number of up-crossings
of the zero level. Then for any k € {0,1,2,...},
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1(Si < 0,S41 = k) =Y _1(0] = k).
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If we believe in the ergodicity of O, then

7r+(k)EXLL/—%] ~ cP(X; > k).

A similar argument gives

L] =
E, [\ﬁ] ~ C;()P(Xl > k) = cE|X,|/2.
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Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case.
We represent P, (O] € -) = uPQ, where @ and P are transition
probabilities of two new Markov chains defined by

P(x,dy) := ]P’X(ST1¢_1 € —dy), x,ye X,
Q(x,dy) = P(X; edy+x|Xi>x), x,yei&.

P corresponds to the undershoot at the up-crossing and Q gov-
erns the increment performing the level-crossing.

V.
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Proposition

Assuming EX; = 0, the kernels P and @ are reversible with
respect to m.

7, is a stationary distribution for P and @ and, consequently,
for OT.




Uniqueness

Assuming EX; = 0 and EX? < oo, 7 is a unique stationary
distribution of O.

The chain O] is ergodic. \
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Uniqueness
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Assuming EX; = 0 and EX? < oo, 7 is a unique stationary
distribution of O.

The chain O] is ergodic.

Proof of Theorem 2 (idea)

Combine e-coupling with the Stone local limit theorem to show
that for any bounded Lipschitz f : X, — R,

n—o0
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Convergence

The distribution of Xj is called spread out if the distribution of
Sy is non-singular for some k > 1.
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Theorem 3
Assume [EX; = 0 and that the distribution of Xj is either arith-
metic or spread out. Then

lim [|P.(O] € ) =7 ()tv=0, x€X,.

n—o0
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Convergence

Smoothness assumption

The distribution of Xj is called spread out if the distribution of
Sy is non-singular for some k > 1.

Theorem 3
Assume [EX; = 0 and that the distribution of Xj is either arith-
metic or spread out. Then

lim [|P.(O] € ) =7 ()tv=0, x€X,.

n—o0
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Proof

This follows from a general statement for ¢/-irreducible aperiodic
chains with a stationary distribution (however, it only gives the
convergence for m -a.e. x). Such setting, where a stationary
distribution is known to exist, is typical for MCMC.
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Convergence

Assume [EX; = 0 and that the distribution of X is either arith-
metic or spread out. Then for all x € X, we have

fm_ (0] € ) = my (Vv =0. (1

Remark

| 8
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Eq (1) fails Vx € X, if X is neither spread out nor arithmetic
but with countable support, e.g. supp(X;) = {—1,v/2}.




Convergence

Assume [EX; = 0 and that the distribution of X is either arith-
metic or spread out. Then for all x € X, we have

lim [B(0] € ) = me ()l = 0. M

Remark

Eq (1) fails Vx € X, if X is neither spread out nor arithmetic
but with countable support, e.g. supp(X;) = {—1,v/2}.

The Dominated Convergence Theorem implies:

limyeo [[PL(O) € -) — m(+)||[7v = O for any prob. measure u
on X,. Hence 7, is the unique stationary measure for O'.
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Rate of convergence

Theorem 4

Assume [EX; = 0 and that the distribution of Xj is either arith-
metic or spread out. In addition, assume that either EX? < oo
or X; € D(a, B) for some a € (1,2), 3] < 1.

Then for any v € {0,1} in the first case and any v > 0 small
enough in the second case, there exist constants r € (0,1) and
c; > 0 such that

IP(O} € ) = (llv, S a(l+x")r",  x€ X,

| A\

Idea of proof

Use the so-called Meyn and Tweedie approach. We already have
t-irreducibility. The Lyapunov function is V,(x) := x¥ + 1.
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Motivation

Local times of random walks
Let L, := max{k > 0 : T, < n} be the number of zero-
level crossings, and let ¢y be the local time at O at time 1 of a

standard Brownian motion.
Perkins('82): EX? < oo, then for any x,

L
1 n
WE Ok 5 /Var(Xp)lo  under P
k=1

The ergodicity of O, now yields the limit theorem for L,,, gener-
alising Borodin ('80s): if S is either integer-valued or has density

E[Xi]
then L /\/_—> \/mgo




What ought to be true?

Recall S, = S+ X1 + ...+ X, and O] = S_+, where T] =0,

Tl =min{k> T} :S,; <0and S, > 0}.
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Recall S, = S+ X1 + ...+ X, and O] = S_+, where T] =0,

TJ+1 =min{k > T!:S,_; <0and S, >0}.

If E|Xi|] € (0,00) and EX; = 0, the following weak limit
P.(O! € -) 2 7., as n — oo, holds for any x € X
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What ought to be true?

Recall S, = S+ X1 + ...+ X, and O] = S_+, where T] =0,

Tl =min{k> T} :S,; <0and S, > 0}.

If E|Xi|] € (0,00) and EX; = 0, the following weak limit
(O ) B 7., as n — oo, holds for any x € X.

Evidence

| %
: x

@ Conjecture holds if Xj is arithmetic or spread out, since
IP.(O} € ) =7 ()|ltv = 0 as n — oo for any x € X,

@ Conjecture implies uniqueness of the stationary law 7,
which holds if EX? < oo (or if X is either spread out or
arithmetic).

v




