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Introduction

Random walk

Let Sn = S0 + X1 + . . . + Xn be a zero mean non-degenerate
random walk in R with i.i.d. increments X1,X2, . . . and the
starting point S0 that is a r.v. independent of the increments.

The Markov chain of overshoots

Define the crossing times Tn of the zero level: T0 := 0 and

Tn+1 := min{k > Tn : Sk−1 < 0, Sk ≥ 0 or Sk−1 ≥ 0, Sk < 0}.

Now, define the corresponding overshoots:

On := STn , n ≥ 0.

The sequence (On)n≥0 is a Markov chain starting at O0 = S0.
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The problem

Does O have a stationary distribution? Is it unique?

Do On stabilise to this distribution in the sense that the
laws P(On ∈ ·|S0 = x) converge to this distribution ∀x?

What is the rate of this convergence?

Overshoots at up-crossings

Since O has a periodic structure, it suffices to consider the
Markov chain O↑n := O2n of the overshoots at up-crossing times
T ↑n = T2n, starting at S0 ≥ 0.
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Stationary distribution

Arithmetic vs non-arithmetic

The random walk Sn is called non-arithmetic if P(X1 ∈ dZ) < 1
for any d . All other walks are called arithmetic. An arithmetic
RW is d-arithmetic iff d = max{d ′ ≥ 0 : P(X1 ∈ d ′Z) = 1}.

State space

Define the state space X+ of the walk as [0,∞) in the non-
arithmetic case and as {0, d , 2d , . . .} in the d-arithmetic case.

Theorem 1

Let λ+ be either Lebesgue or d ·# (counting) measure on X+,
respectively. Then

π+(dx) :=
2

E|X1|
P(X1 > x)λ+(dx), x ∈ X+

is a stationary distribution for the chain O↑n .
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Heuristics

Assume EX 2
1 = 1 and that Sn is aperiodic integer-valued.

Let L↑n := max{i ≥ 0 : T ↑i ≤ n} be the number of up-crossings
of the zero level. Then for any k ∈ {0, 1, 2, . . .},

n−1∑
i=0

1(Si < 0, Si+1 = k) =

L↑n∑
i=1

1(O↑i = k).

By L-CLT: Px(Si = −`) = exp(−(`+ x)2/2i)/
√

2πi +o(1/
√
i)

Ex

[
L↑n√
n
· 1

L↑n

L↑n∑
i=1

1(O↑i = k)

]
=

1√
n

n−1∑
i=0

Px(Si < 0, Si+1 = k)

=
1√
n

n−1∑
i=0

∞∑
`=1

Px(Si = −`)P(X1 = k + `)

∼ 1√
n

n−1∑
i=1

1√
2πi

o(
√
n)∑

`=1

P(X1 = k + `)
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If we believe in the ergodicity of O↑n , then

π+(k)Ex

[ L↑n√
n

]
∼ cP(X1 > k).

A similar argument gives

Ex

[ L↑n√
n

]
∼ c

∞∑
k=0

P(X1 > k) = cE|X1|/2.
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Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case.
We represent Pµ(O↑1 ∈ ·) = µPQ, where Q and P are transition
probabilities of two new Markov chains defined by

P(x , dy) := Px(ST↑
1 −1
∈ −dy), x , y ∈ X+

Q(x , dy) := P(X1 ∈ dy + x |X1 > x), x , y ∈ X+.

P corresponds to the undershoot at the up-crossing and Q gov-
erns the increment performing the level-crossing.

Proposition

Assuming EX1 = 0, the kernels P and Q are reversible with
respect to π+.

Corollary

π+ is a stationary distribution for P and Q and, consequently,
for O↑.
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Uniqueness

Theorem 2

Assuming EX1 = 0 and EX 2
1 < ∞, π+ is a unique stationary

distribution of O↑n .

Corollary

The chain O↑n is ergodic.

Proof of Theorem 2 (idea)

Combine ε-coupling with the Stone local limit theorem to show
that for any bounded Lipschitz f : X+ → R,

lim
n→∞

∣∣∣1
n

n∑
i=1

f (O↑i (x))− 1

n

n∑
i=1

f (O↑i (y))
∣∣∣ P

= 0, x , y ∈ X+.
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Convergence

Smoothness assumption

The distribution of X1 is called spread out if the distribution of
Sk is non-singular for some k ≥ 1.

Theorem 3

Assume EX1 = 0 and that the distribution of X1 is either arith-
metic or spread out. Then

lim
n→∞
‖Px(O↑n ∈ ·)− π+(·)‖TV = 0, x ∈ X+.

Proof

This follows from a general statement for ψ-irreducible aperiodic
chains with a stationary distribution (however, it only gives the
convergence for π+-a.e. x). Such setting, where a stationary
distribution is known to exist, is typical for MCMC.
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Convergence
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Remark

Eq (1) fails ∀x ∈ X+ if X1 is neither spread out nor arithmetic
but with countable support, e.g. supp(X1) = {−1,

√
2}.

The Dominated Convergence Theorem implies:

Corollary

limn→∞ ‖Pµ(O↑n ∈ ·) − π+(·)‖TV = 0 for any prob. measure µ
on X+. Hence π+ is the unique stationary measure for O↑.
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Rate of convergence

Theorem 4

Assume EX1 = 0 and that the distribution of X1 is either arith-
metic or spread out. In addition, assume that either EX 2

1 <∞
or X1 ∈ D(α, β) for some α ∈ (1, 2), |β| < 1.
Then for any γ ∈ {0, 1} in the first case and any γ > 0 small
enough in the second case, there exist constants r ∈ (0, 1) and
c1 > 0 such that

‖Px(O↑n ∈ ·)− π+(·)‖Vγ ≤ c1(1 + xγ)rn, x ∈ X+.

Idea of proof

Use the so-called Meyn and Tweedie approach. We already have
ψ-irreducibility. The Lyapunov function is Vγ(x) := xγ + 1.
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Motivation

Local times of random walks

Let Ln := max{k ≥ 0 : Tk ≤ n} be the number of zero-
level crossings, and let `0 be the local time at 0 at time 1 of a
standard Brownian motion.
Perkins(’82): EX 2

1 <∞, then for any x ,

1√
n

Ln∑
k=1

|Ok |
D→
√
Var(X1)`0 under Px .

The ergodicity of On now yields the limit theorem for Ln, gener-
alising Borodin (’80s): if S is either integer-valued or has density

then Ln/
√
n
D→ E|X1|√

Var(X1)
`0.
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What ought to be true?

Recall Sn = S0 + X1 + . . . + Xn and O↑n = ST↑
n

, where T ↑0 = 0,

T ↑n+1 = min{k > T ↑n : Sk−1 < 0 and Sk ≥ 0}.

Conjecture

If E|X1| ∈ (0,∞) and EX1 = 0, the following weak limit

Px(O↑n ∈ ·)
D→ π+, as n→∞, holds for any x ∈ X+.

Evidence

Conjecture holds if X1 is arithmetic or spread out, since
‖Px(O↑n ∈ ·)− π+(·)‖TV → 0 as n→∞ for any x ∈ X+.

Conjecture implies uniqueness of the stationary law π+,
which holds if EX 2

1 < ∞ (or if X1 is either spread out or
arithmetic).
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