Cutoff for SRW on Ramanujan graphs via degree inflation
Jonathan Hermon




Goals

m Lubetzky & Peres (15) - SRW on Ramanujan graphs exhibits cutoff.

m We give a short alternative proof exploiting hit-mix connections.



General Reversible MCs - Notation

m Transition matrix - P.

m Stationary dist. - .

m State space Q.

m Reversibility: 7(z)P(z,y) = 7(y)P(y, z) for all z, y.

m The hitting-time of A  Q is T4 := inf{t : X; € A}.



Expander graphs

m P transition matrix of SRW on a graph G.
m )\; - ith largest e.v. of P.
m Expander family - a seq. of reg. graphs G,, with

sup \2(Gr) < 1.
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Expander graphs

P transition matrix of SRW on a graph G.

i - ith largest e.v. of P.

Expander family - a seq. of reg. graphs G,, with

sup \2(Gr) < 1.

m Alon-Milman (85) - equivalent to lack of sparse cuts (discrete Cheeger’s ineq.).

m Best “infinite expander” - the d-ary tree Tj.

24/d—1
7

pa := spectral-radius of SRW on T, =

m Alon-Boppana (86) - A2(G) = pa — o(1).



Motivation - Expander graphs and cutoff

m 6-TV mixing time

fonin (8) = inf ik : %Z |P¥ (v, 1) — 7(u)| < & forall v},

u

m Easy fact - For an n-vertex d-regular expander, mixing in TV of SRW is not “very
gradual’: i.e. for some o(1) terms

b (1= 0(1)) = (1 — (1)) 7% log,_y .

tmix(1/n) < 2(1 = X2) " logn.
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m 6-TV mixing time

fonin (8) = inf ik : %2 |P¥ (v, 1) — 7(u)| < & forall v},

u

m Easy fact - For an n-vertex d-regular expander, mixing in TV of SRW is not “very
gradual’: i.e. for some o(1) terms

d
tmix(l - 0(1)) 2 (1 — 0(1))m lOgd71 n.
tmix(1/n) < 2(1 — )\2)71 log n.
m Conjecture (Peres (04)) - SRW on transitive expanders exhibits cutoff:

tmix(1 = 0(1)) = (14 o(1))tmix(0(1)).

m Until (15) not a single such example was understood!
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m Ramanujan graph - A connected 3 < d-reg graph with all non-unit e.v.s (of P)

in [—pa, pa = 2X4=1] (“optimal expanders” by AB).

m Used in quantum computing and in constructions of codes with some extremal
properties.

m Constructions: Lubotzky, Phillips, Sarnak (88), Margulis (88) - for d — 1 = prime,
Morgenstern (94) - for d — 1 = prime power.

m Marcus, Spielman, Srivastava (13) - existence for all d.
m A seq. of connected d-reg. G, is almost Ramanujan if all e.v.s lie in
AN IR E 2t

m Friedman (01) - A seq. of random d-reg. graphs of increasing sizes is w.h.p.
almost Ramanujan (conjectured by Alon).



Diameter lower bound on TV mixing

B G d-reg. = Diameter(G) = log,_, n.

m The “average speed” of SRW is < 42 (sharp for Ty).

m — To “see” at least en vertices the walk needs
d d
T3 log,_,(en) = T3 log,_; n.
steps.

m For a d-ary tree of size n, SRW starting from the root exhibit abrupt convergence
around time <% log,_; n.



Cutoff for Ramanujan graphs

Lemma (Easy diameter lower bound - Lubetzky & Peres (15))

Let G be an n-vertex d = 3-regular graph. Then SRW on G satisfies?

d
Ve € (0,1), tmix(e £o(1)) = =3 log,_ 1 n + caeq/logy_q n.

L dp -1
qcg.e 1= m@ (1—c¢).

(1)
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Lemma (Easy diameter lower bound - Lubetzky & Peres (15))

Let G be an n-vertex d = 3-regular graph. Then SRW on G satisfies?

d
Ve € (0,1), tmix(e £o(1)) = =3 log,_ 1 n + caeq/logy_q n.

D11 —e).

a dpg
c = —t
d,e (d72)3/2

(1)

Theorem (LP (15))

If G is Ramanujan then (1) holds also with < instead of >
(i.e. cutoff at time 4% log,_, n).

Corollary

For an n-vertex d-reg. Ramanujan graph, for all z all but o(n) vertices are within
distance (1 + o(1)) log,_, n from x.
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Motivation

m In this talk - an easy alt. proof assuming diverging girth'2.
m Observation - cutoff for almost Ramanujan is trivial if d — oo :
Proof: pg = 24=1 — pl+ot) — g=3+o() | et
t:=(1+0d)log, ;n~ %(1 +0)log gn

— 2= (=01

so by Poincaré’s ineq.:

IPS =73 < (05" IPS = 7l3n ~ i (n = 1) ~ 7"

"Enough that for some diverging k.., every ball of radius k., in G,, has O(1) disjoint cycles.
2Always true for transitive Ramanujans of diverging sizes.
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Cutoff for Ramanujan graphs

m Def.: Given G = (V, E), define G(k) = (V, E(k)) via
E(k) := {{u, v} : dist(u,v) = k}.

m Assume g := girth(G) — .
m Consider SRW on G(k) for some 1 « k « g.
m Morally, cutoff for G(k) around time ¢ should imply cutoff for G around time %kt.

m Want G(k) to be almost Ramanujan and deduce cutoff for G(k).

m We'll show something similar (bypassing the “morally”) exploiting hit-mix
machinery...



tmix and hitting times - under reversibility

m Aldous (83) - tmix = maxa,a 7(A)E.[Ta].

m Peres & Sousi and independently Oliveira (12)® tmix = maxXg A:x(A)s1/2 Ea[Ta].

3.+ an extension by Griffiths et al. (2012) for size exactly 1/2.



tmix and hitting times - under reversibility

m Aldous (83) - tmix = maxa,a 7(A)E.[Ta].

m Peres & Sousi and independently Oliveira (12)® tmix = maxXg A:x(A)s1/2 Ea[Ta].

Figure: 2 copies of K,, connected by a single edge.

® drv(t) ~ 3P (the other clique was not hit by time t) = maybe we should look at
tails rather than on expectations!

3.+ an extension by Griffiths et al. (2012) for size exactly 1/2.
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Why is this useful?

Using hit-mix connections we can:

m Can prove theoretical result about MCs.
m Construct surprising counter-examples.
m Analyze mixing when we know what sets are hardest to hit (so far only trees).

m Analyze mixing when we can control hitting times of all large sets uniformly
(Ramanujan).



More precisely

For any reversible finite chain, 0 < e <1 and 0 < @ < min(e, 1 — ¢)

hite (e + ) — %| loga|  <tmix(e) < hita(e —a) + ﬁ| log o

m Terms involving Aaps := 1 — max{A2, |\o|} are often negligible
(and always 1/Aabs < tmix)-



m Let P4 be the restriction of P to A < Q (killed when escaping A).
m Let A(A) be the largest e.v. of Py4.

m Let m4 be 7 conditioned on A.



Proof of cutoff for Ramanujan graphs

m Consider SRW on G(k) for some 1 « k « 4/girth.

m Let 5
a:=d =o(1).
® If hite(a) = § log,_, n =: s for G(k), then:

for G: hite (a4 0(1)) < (—2—k)s =

Llo n
d—2 d—2 8-t

(upto o(1) terms on r.h.s.).

m — cutoff for SRW on G.
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m Back to G(k) - Denote the transition matrix corresponding to SRW on it by K (and
for G by P)

3 wa®)(Po[Tac > t])? = |KiLal3a < xc (A
beA

B = (P,[Tac > 1])? < n[Ax(A)]*. We are done if Ak (A) < d—5(=o),
m Will show this via a simple comparison technique:
Proposition
Let P and Q be reversible w.r.t. 7. Assume K (z,y) < CQ(z,y) for all z,y.
Ax(A) < CAg(A)

( Ak (A) and \q(A) - largest eigenvalues of K4 and Q 4, resp.).

Proof: Denote (f, gpx, := > ,co ma(x)g(x) f(x). By Perron-Frobenius

maXfeR_?,f;é0<KAf7 na maxfeRﬁ,f¢o<QAfa ora

Ap(A) = <
P(4) i T

=Cho(A). O




Let Q := P**?" (as before K SRW on G(k)). Let A = V be s.t. m(A) < a = o(1).

Recall - want Ak (A) < (d— 1)~ 5 (o),
By last Lemma: Ak (A) < Ag(A)/[ming, y K(z,vy)/Q(z,y)].
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Let Q := P**?" (as before K SRW on G(k)). Let A = V be s.t. m(A) < a = o(1).

Recall - want Ak (A) < (d— 1)~ 5 (o),
By last Lemma: Ak (A) < A\g(A)/[min, 4 K(z,y)/Q(z,y)].
General fact - A\(A) < w(A) + Aam(A°)

= A\g(A) < )\IQH%Q +a< 2p§+2k2.

Let =,y be adjacent in G(k). Then

1 k + 2k> k% +k—o(k) g—(k+2k?)
_ -1
Q(x7 y) number of such y’s < k2 ) (d ) ‘

= K(z,y) - Cx, where

Ch = 2k+2k2 (d— 1)k2+k70(k)d7(k+2k2) _ pl;+2k2 (d— l)g(uou)).

— Ak (A) < Ag(A)/Cr < 2pk+2k2/0k = (d— 1),§(170(1))'
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min{t : Py[Tae > t] < w(A) :forall Ac Qs.t m(A) <1/2}.

m Same for relative-entropy with instead of 7(A).

1
[Tog m(A)]

m First sharp bounds!

L] CLog—Sobolev = ianﬂr(A)Sl/Z [1 - A(A)]/| IOgﬂ'(A)|



Applications - Positive results

(Basu, H., Peres (13)): Characterize cutoff using hitting times.

m H. and Peres (15) - one lazy step mixes twice quicker than always being lazy.

For (weighted RW on) trees:

Peres and Sousi (12) - tmix is robust*.

m H. and Peres (16) - 7. is robust (and is = max(tmix, 1/CLog—Sobolev))-

BHP - cutoff iff (spectral-gap) x tmix — 0.

4A parameter is robust if changing the edge-weights by a bounded amount can change it only by a constant
factor.



Negative results - counterexamples inspired by hit-mix connections

m Ding and Peres (12) - tmix iS not robust.

B H. (16) - 70 and Trelative—entropy are not robust (resolves a conjuncture of Kozma;
variants asked by various authors Aldous, Diaconis and Saloff-Coste).

m H. and Peres (16) - separation cutoff may depend on the holding prob.!



Thank you!



