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Quasistationarity: boundary killing

Ant on volcanic island undergoing Brownian motion, killed at τ∂ when it
touches lava.

What can be said about P(Xt ∈ · |τ∂ > t) for large t?
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Quasistationarity: interior killing

Let X = (Xt) be a diffusion on Rd . Introduce killing rate

κ : Rd → [0,∞).

Define killing time via

τ∂ := inf

{
t ≥ 0 :

∫ t

0
κ(Xs) ds > ξ

}
where ξ ∼ Exp(1), independent of X .

We will consider Px(Xt ∈ · |τ∂ > t).
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Quasistationarity: interior killing example

Take X to be a standard Brownian motion on R2, κ(y) = ‖y‖2.

What can be said about P(Xt ∈ · |τ∂ > t) for large t?
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Important concepts

Definitions

A density π on Rd is called a quasilimiting distribution if

Px(Xt ∈ E |τ∂ > t)→ π(E )

for each Borel-measurable E ⊂ Rd as t →∞, for any starting point
x ∈ Rd .
π is called quasistationary if for any t ≥ 0

Pπ(Xt ∈ · |τ∂ > t) = π(·).

Laws {Px(Xt ∈ · |τ∂ > t)}t≥0 are not consistent.

Even under irreducibility there may be many quasistationary functions.
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Quasistationary Monte Carlo

Given a diffusion X on Rd , defined through

dXt = ∇A(Xt) dt + dWt , X0 = x ∈ Rd ,

where A : Rd → R is smooth, and a (smooth, positive) target density π on
Rd ,

can we define a killing rate κ : Rd → [0,∞) so that π is the
quasilimiting distribution?
E.g.

π(x) ∝
N∏
i=1

fi (x)

is a Bayesian posterior distribution. Why? Scalable Langevin Exact
Algorithm: scales well with N.

See Pollock et al. (2016). The Scalable Langevin Exact Algorithm:
Bayesian Inference for Big Data. arXiv 1609.03436.
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Main Results

We have proven natural sufficient conditions under which the
quasilimiting distribution of X is π.

We have quantified the rate of convergence to quasistationarity by
relating the killed diffusion to an appropriate Langevin diffusion.
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When does convergence to QS occur? I

Define κ̃ : Rd → R by

κ̃(y) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(y), y ∈ Rd .

Assumption 1

κ̃ is bounded below and not identically zero.

For K := − infy∈Rd κ̃(y), the correct killing rate will be

κ := κ̃+ K .

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 9 / 19



When does convergence to QS occur? I

Define κ̃ : Rd → R by

κ̃(y) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(y), y ∈ Rd .

Assumption 1

κ̃ is bounded below and not identically zero.

For K := − infy∈Rd κ̃(y), the correct killing rate will be

κ := κ̃+ K .

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 9 / 19



When does convergence to QS occur? II

dXt = ∇A(Xt) dt + dWt

If exp(2A) is integrable (and under some regularity conditions), it is
(proportional to) the invariant density of the unkilled diffusion X .

Equivalently, writing U = log π

κ̃(y) =
1

2

(
∆(U − 2A) +∇U · (∇U − 2∇A)

)
.

Then Assumption 1 says this discrepancy can’t be arbitrarily negative.
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When does convergence to QS occur? III

Assumption 2 ∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Two ways to interpret this assumption:

Importance sampling. Cf. rejection sampling condition: there exists
some M such that

π(y)

exp(2A(y))
< M ∀y ∈ Rd .

Need exp(2A) to have heavier tails than π.

Spectral theory: define ϕ := π/ exp(2A), L2(Γ) given by
Γ(dy) = exp(2A(y)) dy . Then we require ϕ ∈ L2(Γ).

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 11 / 19



When does convergence to QS occur? III

Assumption 2 ∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Two ways to interpret this assumption:

Importance sampling.

Cf. rejection sampling condition: there exists
some M such that

π(y)

exp(2A(y))
< M ∀y ∈ Rd .

Need exp(2A) to have heavier tails than π.

Spectral theory: define ϕ := π/ exp(2A), L2(Γ) given by
Γ(dy) = exp(2A(y)) dy . Then we require ϕ ∈ L2(Γ).

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 11 / 19



When does convergence to QS occur? III

Assumption 2 ∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Two ways to interpret this assumption:

Importance sampling. Cf. rejection sampling condition: there exists
some M such that

π(y)

exp(2A(y))
< M ∀y ∈ Rd .

Need exp(2A) to have heavier tails than π.

Spectral theory: define ϕ := π/ exp(2A), L2(Γ) given by
Γ(dy) = exp(2A(y)) dy . Then we require ϕ ∈ L2(Γ).

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 11 / 19



When does convergence to QS occur? III

Assumption 2 ∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Two ways to interpret this assumption:

Importance sampling. Cf. rejection sampling condition: there exists
some M such that

π(y)

exp(2A(y))
< M ∀y ∈ Rd .

Need exp(2A) to have heavier tails than π.

Spectral theory: define ϕ := π/ exp(2A), L2(Γ) given by
Γ(dy) = exp(2A(y)) dy . Then we require ϕ ∈ L2(Γ).

Andi Wang (Oxford) Quasistationary MC August 3rd 2017 11 / 19



When does convergence to QS occur? IV

Theorem (Convergence to Quasistationarity)

Under Assumptions 1 and 2 (and basic regularity conditions), the diffusion
X killed at rate κ has quasilimiting distribution π. That is, for each
measurable E ⊂ Rd we have

Px(Xt ∈ E |τ∂ > t)→ π(E )

as t →∞.
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Key ingredients in proof

Let −Lκ denote the infinitesimal generator of the killed diffusion. Lκ can
be realised as a positive, self-adjoint (unbounded) operator on L2(Γ)
(Assumption 1 required).

We have

Lκϕ = Kϕ

and in fact K = λκ0 , the bottom of the spectrum of Lκ (Assumption 2).

Tweedie’s R-theory1: Assumption 2 enables us to show our killed diffusion
is λ-positive. This gives us the desired convergence.

1Tuominen and Tweedie (1979). Exponential Decay and Ergodicity of General
Markov Processes and Their Discrete Skeletons. Advances in Applied Probability 11
784-803.
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Rates of Convergence to QS I

How fast does Px(Xt ∈ · |τ∂ > t) converge to π?

Consider the Langevin diffusion Z described by

dZt =
1

2
∇ log

(
π2

exp(2A)

)
(Zt) dt + dWt

and let −LZ be the generator of this process, realised as a positive,
self-adjoint operator on the appropriate L2 space.

Theorem

Up to an additive constant, the spectra of LZ and Lκ coincide.
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Rates of Convergence to QS II

So heuristically Px(Xt ∈ · |τ∂ > t) converges to π at the same rate as Z
converging to π2/ exp(2A).

A sufficient condition for a spectral gap is that

lim
‖x‖→∞

κ̃(x) > 0.

It turns out that the Langevin diffusion Z is precisely the Q-process,
defined through

Qx(A) := lim
T→∞

Px(A|T < τ∂)

for A ∈ σ(Xs : s ≤ t) for some t ≥ 0. This is the law of the process
conditioned never to be killed.
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Killed OU process targeting Gaussian

We will kill the diffusion

dXt =
1

2τ2
(ν − Xt) dt + dWt , X0 = x .

This has an N (ν, τ2) invariant distribution.
Our target density is

π(y) ∝ exp

{
− 1

2σ2
(y − µ)2

}
.

Calculations give

κ̃(y) =
1

2

(
(y − µ)2

σ4
− 1

σ2
+

(ν − y)(y − µ)

τ2σ2
+

1

τ2

)
.

This is bounded below when

τ2 > σ2.
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OU Example continued

Assumption 2 also holds when τ2 > σ2; we so have convergence to the
quasistationary distribution π.

Can be shown2 that

Σ(LZ ) =

{
λZn =

n(2τ2 − σ2)

2σ2τ2
: n = 0, 1, 2, . . .

}
.

So by our Theorem the spectral gap of our killed process is

λZ1 − λZ0 =
2τ2 − σ2

2σ2τ2
=

1

σ2
− 1

2τ2
.

2Metafune et al (2002). Spectrum of Ornstein–Uhlenbeck Operators in Lp Spaces
with Respect to Invariant Measures. Journal of Functional Analysis 196 40-60.
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Conclusion

Quasistationary Monte Carlo methods such as the ScaLE algorithm are an
interesting new development, both from a mathematical and applied
perspective.

We have proven some fundamental results in this area, bringing together
some tools from applied probability and abstract operator theory.
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Thanks for listening!

Wang, A.Q., Kolb, M., Roberts, G.O. and Steinsaltz, D. (2017) Theoretical
Properties of Quasistationary Monte Carlo Methods. arXiv 1707.08036

Figure: “Happy volcano scares ant”3

3https://drawception.com/panel/drawing/iMOG6336/happy-volcano-scares-ant/
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