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There is a way of extending geometry for any choice (g, \) of

» a Kac-Moody algebra g of rank r (this talk: simply laced)
» and an integral dominant highest weight A of g, with a

corresponding highest weight representation R(\),

that gives ordinary, double and exceptional geometry in the

cases g = A,, D,, E,, respectively, and A = A;.



Fields depend on coordinates ™, transforming in the

representation R; = R()\), subject to the section condition
oo ® Ony =0,
with the derivatives projected on the dual of Ry @ EQ, where

Ry = Ry v Ry © R(2)),

Eg =R AR1O (—B R(Q/\ — ai).
Ai=1



Under generalised diffeomorphisms, vector fields transform with

the generalised Lie derivative:

LM = UNonvM —vNoNUM 4 YMN poonUP Ve
= UNoyVvM 4 ZMN pooyUtve

where YMNpQ = ZMNPQ + (5Mp(5NQ is a g invariant tensor
with the upper pair of R; indices in Ry ® Ro:

ZMN pg = —(T)YM(To)Vp + (W A) = 1)6M o6V p



Closure of the generalised diffeomorphisms (up to ancillary g

transformations) relies on the section condition
YMN po (0 ®dn) =0
and the fundamental identity

ZNT 50 29 pp — 29T 5p 2N poy

— ZNS o 29T ps + Z5T ppZN Qg = 0.



Add two nodes —1 and 0 to the Dynkin diagram of g,
corresponding to simple roots oy and a_1, and extend the

Cartan matrix A;; = (o, @) so that

(O‘*ba*l) =0,
(a07a—1) = _17 (O((),O[O) = 27

— ;.

(o, a—1) =0, (v, ap)



Associate three generators ey, fr, hy to the each node I

(I =-1,0,1,...,7), where e_1, f_1 are odd, the others even.

Let % be the Lie superalgebra generated by all e, fr, ht

modulo the Chevalley-Serre relations
[hr,eq] = Arges,  [hr, fil = —=Anfs, ler, fil = érhy,
(ad ep)' ™17 (eg) = (ad fr)' =1 (f) = 0.

This is a Borcherds(-Kac-Moody) superalgebra.



The Borcherds superalgebra % decomposes into a (Z x Z

grading of g-modules spanned by root vectors e, where

a=noa_1+pag+ y,_4a;0, and hy for n =p = 0.

~—~

p=-—1 p=0 p=1 p=2 p=3
n=0
g=3 Ry n=1
q=2 f?z 1?3369}%3
qg=1 1 Ry Ry ® Ry Ry @ Ry n=3
qg=0 Ry 1®adj®1 R Ry R3

1




Ordinary geometry, g = sl(r +1), & =sl(r +2|1):

p=-—1 p=0 p=1
=1 1 v
q=0 v 1®adjd1 v
q=-1 v 1



Double geometry, g = so(r,r), Z = osp(r + 1,r +1|2):

p=-2 p=-1 p=0 p=1 p=2
g=1 1 v 1
qg=0 1 v 1®adjd1 v 1
q=-—1 1 v 1



Exceptional geometry, g = s0(5,5):

p=-—1 p=0 p=1 p=2 p=3 p=4 p=>
qg=2 1 16
qg=1 1 16 10 16 45@1 144916
q=0 16 104501 16 10 16 45 144
qg=-1 16 1




Exceptional geometry, g = E7:

p=20 p=1 p=2 p=3 p=4
q=3 1
q=2 1 56 15399133011
g=1 1 56 1331 912®56 8645@133P15399133d1
q=0 1913301 56 133 912 8645 @ 133
q=—1 1




Back to the general case:

p=-—1 p=0 p=1 p=2 p=3
q=14
q=3 1?33
q=2 Ry R;;@i;
g=1 1 R Ry® Ry Rs® Rs
q=0 R, 1@adj@1 R, Ry R;

1




Basis elements:

p=-1 p=0 p=1 p=2 p=3
q=14
q=3
q=2 [Ea, Ex]
g=1 f-1 Ey (B, Ex]
¢=0 M k, Tk Eu [Ea, EN]
g=-1 M e_1

We identify the internal tangent space with the odd subspace
spanned by the Fj; and write a vector field V as V = VME,,.
It can be mapped to the even element Vi = [f_1,V] = VME),.



The generalised Lie derivative is now given by

LoV = [[UFN],onVF] — [[oxU*, FV], V]
The section condition can be written

[FM FNloy @ oy = [FM, FN]oy @ dn =0 .

It follows from relations in the Lie superalgebra 9 whether the

transformations close or not.

[Palmkvist: 1507.08828]



If g is finite-dimensional and A is a fundamental weight A; such

that the corresponding Coxeter number ¢; is equal to 1, then
Lvy — Ly = Luvys
where
1
[U, V] = §($UV - L U).

This is the 2-bracket of an Lo, algebra.
1 2 3 2 1 1 2 3 4 3 2 2 3 4 5 6 4 2

[Cederwall, Palmkvist: 1711.07694, 1804.04377]



In addition to the vector fields in Ry at (p,q) = (1,0), the
L algebra also contains ghosts C), in R, at higher levels p and
q =0, as well as ancillary ghosts K, in R, at p > pg and ¢ = 1,

where pg is the lowest level p such that Epﬂ is nonzero.

The 1-bracket is given by [C] = dC and [K] = dK + K°,
where d ~ (ad FM) 0y and b ~ ad e_;.

The ancillary ghosts appear when d fails to be covariant.

Kpy == Kpo+1 == Kpor2 <;— -

O

0 Cq e lelt) -1 Cp(] CP[) +1 CP() +2

d d d

d d d d

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]
[Cederwall, Edlund, Karlsson: 1302.6736]



The Lo, degrees are given by ¢ = p + ¢ (with the convention
that all brackets have degree —1). Explicit expressions for all

brackets can be derived from the Lie superbracket in Z.

p=-—1 p=0 p=1 p=2 p=3
q=2 Ry E:;@i;
g=1 1 R Ry® Ry Rs® Rs
q=0 R, 1@adj®1 Ry Ry R3
" 1 (=1] (=2] ¢ =3]

[Cederwall, Palmkvist: 1804.04377]



If g is infinite-dimensional, or if g is finite-dimensional and
(A, 0) = 2, where 6 is the highest root, then the generalised
diffeomorphisms only close up to ancillary g transformations.
In order to describe these cases we need to replace the

Borcherds superalgebra % with a tensor hierarchy algebra.

[Cederwall, Palmkvist: 1711.07694, work in progress ...]



The tensor hierarchy algebra is a Lie superalgebra that can be

constructed from the same Dynkin diagram as 4, but with

modified generators and relations: (i = 1,2,...,7)
-1 - J(-1yi
[ho, f-1] = f-1 - [ho, f—1)il = f=1)i
[e—1, f-1] = h1 - [e—1, f—1yil = ha

» The simple root av_1 has multiplicity 1 as usual, but its

negative has multiplicity 7.

> The bracket [e;, f(_1);] may be nonzero. Not only positive

and negative roots, but also mixed ones appear.

[Palmkvist: 1305.0018] [Carbone, Cederwall, Palmkvist: 1802.05767]



To be better understood:

» The tensor hierarchy algebras ...

» The gauge structure when ancillary transformations
appear, first when g, is finite-dimensional, second when g,

is infinite-dimensional . ..

» The dynamics: Under control when g, is affine.
Maybe also when g, itself is affine and g,,1 hyperbolic?
(Henning’s talk)

Obvious direction for further research: towards g, = F11



