
Extended algebras and geometries

Jakob Palmkvist

Based on 1804.04377, 1711.07694 (with Martin Cederwall),

1802.05767 (with MC and Lisa Carbone) and 1507.08828



There is a way of extending geometry for any choice pg, λq of

§ a Kac-Moody algebra g of rank r (this talk: simply laced)

§ and an integral dominant highest weight λ of g, with a

corresponding highest weight representation Rpλq,

that gives ordinary, double and exceptional geometry in the

cases g “ Ar, Dr, Er, respectively, and λ “ Λ1.



Fields depend on coordinates xM , transforming in the

representation R1 “ Rpλq, subject to the section condition

BxM b BNy “ 0,

with the derivatives projected on the dual of R2 ‘ rR2, where

R2 “ R1 _R1 aRp2λq,

rR2 “ R1 ^R1 a
à

λi“1

Rp2λ´ αiq.



Under generalised diffeomorphisms, vector fields transform with

the generalised Lie derivative:

LUV
M “ UNBNV

M ´ V NBNU
M ` YMN

PQBNU
PV Q

“ UNBNV
M ` ZMN

PQBNU
PV Q

where YMN
PQ “ ZMN

PQ ` δ
M
P δ

N
Q is a g invariant tensor

with the upper pair of R1 indices in R2 ‘ rR2:

ZMN
PQ “ ´pT

αqMQpTαq
N
P `

`

pλ, λq ´ 1
˘

δMQδ
N
P



Closure of the generalised diffeomorphisms (up to ancillary g

transformations) relies on the section condition

YMN
PQpBM b BN q “ 0

and the fundamental identity

ZNT SMZ
QS

RP ´ Z
QT

SPZ
NS

RM

´ ZNSPMZ
QT

RS ` Z
ST

RPZ
NQ

SM “ 0.



Add two nodes ´1 and 0 to the Dynkin diagram of g,

corresponding to simple roots α0 and α´1, and extend the

Cartan matrix Aij “ pαi, αjq so that

pα´1, α´1q “ 0,

pα0, α´1q “ ´1, pα0, α0q “ 2,

pαi, α´1q “ 0, pαi, α0q “ ´λi.



Associate three generators eI , fI , hI to the each node I

(I “ ´1, 0, 1, . . . , r), where e´1, f´1 are odd, the others even.

Let B be the Lie superalgebra generated by all eI , fI , hI

modulo the Chevalley-Serre relations

rhI , eJ s “ AIJeJ , rhI , fJ s “ ´AIJfJ , reI , fJ s “ δIJhJ ,

pad eIq
1´AIJ peJq “ pad fIq

1´AIJ pfJq “ 0 .

This is a Borcherds(-Kac-Moody) superalgebra.



The Borcherds superalgebra B decomposes into a pZˆ Zq-
grading of g-modules spanned by root vectors eα, where

α “ nα´1 ` pα0 `
řr
i“1 ai αi, and hI for n “ p “ 0.

¨ ¨ ¨ p “ ´1 p “ 0 p “ 1 p “ 2 p “ 3 ¨ ¨ ¨

¨ ¨ ¨ n “ 0

q “ 3
r

rR3 n “ 1

q “ 2 rR2
rR3 ‘

r

rR3 n “ 2

q “ 1 1 R1 R2 ‘ rR2 R3 ‘ rR3 n “ 3

q “ 0 R1 1‘ adj‘ 1 R1 R2 R3 ¨ ¨ ¨

¨ ¨ ¨ R1 1



Ordinary geometry, g “ slpr ` 1q, B “ slpr ` 2 | 1q:

p “ ´1 p “ 0 p “ 1

q “ 1 1 v

q “ 0 v 1‘ adj‘ 1 v

q “ ´1 v 1



Double geometry, g “ sopr, rq, B “ osppr ` 1, r ` 1 | 2q:

p “ ´2 p “ ´1 p “ 0 p “ 1 p “ 2

q “ 1 1 v 1

q “ 0 1 v 1‘ adj‘ 1 v 1

q “ ´1 1 v 1



Exceptional geometry, g “ sop5, 5q:

p “ ´1 p “ 0 p “ 1 p “ 2 p “ 3 p “ 4 p “ 5

q “ 2 1 16

q “ 1 1 16 10 16 45‘ 1 144‘ 16

q “ 0 16 1‘ 45‘ 1 16 10 16 45 144

q “ ´1 16 1



Exceptional geometry, g “ E7:

p “ 0 p “ 1 p “ 2 p “ 3 p “ 4

q “ 3 1

q “ 2 1 56 1539‘ 133‘ 1‘ 1

q “ 1 1 56 133‘ 1 912‘ 56 8645‘ 133‘ 1539‘ 133‘ 1

q “ 0 1‘ 133‘ 1 56 133 912 8645‘ 133

q “ ´1 1



Back to the general case:

¨ ¨ ¨ p “ ´1 p “ 0 p “ 1 p “ 2 p “ 3 ¨ ¨ ¨

q “ 4 ¨ ¨ ¨

q “ 3
r

rR3 ¨ ¨ ¨

q “ 2 rR2
rR3 ‘

r

rR3 ¨ ¨ ¨

q “ 1 1 R1 R2 ‘ rR2 R3 ‘ rR3 ¨ ¨ ¨

q “ 0 R1 1‘ adj‘ 1 R1 R2 R3 ¨ ¨ ¨

q “ ´1 R1 1

We identify the internal tangent space with the odd subspace

spanned by the EM and write a vector field V as V “ VMEM .

It can be mapped to V 7 “ re, V s “ VM
rEM at height q “ 1.



Basis elements:

¨ ¨ ¨ p “ ´1 p “ 0 p “ 1 p “ 2 p “ 3 ¨ ¨ ¨

q “ 4 ¨ ¨ ¨

q “ 3 ¨ ¨ ¨ ¨ ¨ ¨

q “ 2 r rEM , rEN s ¨ ¨ ¨ ¨ ¨ ¨

q “ 1 f´1 rEM rEM , rEN s ¨ ¨ ¨ ¨ ¨ ¨

q “ 0 FM rk , Tα, k EM rEM , EN s ¨ ¨ ¨ ¨ ¨ ¨

q “ ´1 rFM e´1

We identify the internal tangent space with the odd subspace

spanned by the EM and write a vector field V as V “ VMEM .

It can be mapped to the even element V 7 “ rf´1, V s “ VM
rEM .



The generalised Lie derivative is now given by

LUV “ rrU, rF
N s, BNV

7s ´ rrBNU
7, rFN s, V s .

The section condition can be written

rFM , FN sBM b BN “ r rF
M , rFN sBM b BN “ 0 .

It follows from relations in the Lie superalgebra B whether the

transformations close or not.

[Palmkvist: 1507.08828]



If g is finite-dimensional and λ is a fundamental weight Λi such

that the corresponding Coxeter number ci is equal to 1, then

LULV ´LV LU “ LrrU,V ss,

where

rrU, V ss “
1

2
pLUV ´LV Uq.

This is the 2-bracket of an L8 algebra.

1 2 3 2 1

2

1 2 3 4 3 2

2

2 3 4 5 6 4 2

3

[Cederwall, Palmkvist: 1711.07694, 1804.04377]



In addition to the vector fields in R1 at pp, qq “ p1, 0q, the

L8 algebra also contains ghosts Cp in Rp at higher levels p and

q “ 0, as well as ancillary ghosts Kp in Rp at p ě p0 and q “ 1,

where p0 is the lowest level p such that rRp`1 is nonzero.

The 1-bracket is given by rrCss “ dC and rrKss “ dK `K5,

where d „ padFM q BM and 5 „ ad e´1.

The ancillary ghosts appear when d fails to be covariant.

Kp0

5

��

oo
d

Kp0`1

5

��

oo
d

Kp0`2

5

��

oo
d

¨ ¨ ¨

0 oo
d

C1
oo
d

¨ ¨ ¨ oo
d
Cp0´1

oo
d

Cp0
oo

d
Cp0`1

oo
d

Cp0`2
oo
d

¨ ¨ ¨

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]

[Cederwall, Edlund, Karlsson: 1302.6736]



The L8 degrees are given by ` “ p` q (with the convention

that all brackets have degree ´1). Explicit expressions for all

brackets can be derived from the Lie superbracket in B.

¨ ¨ ¨ p “ ´1 p “ 0 p “ 1 p “ 2 p “ 3 ¨ ¨ ¨

¨ ¨ ¨

q “ 3
r

rR3

q “ 2 rR2
rR3 ‘

r

rR3

q “ 1 1 R1 R2 ‘ rR2 R3 ‘ rR3

q “ 0 R1 1‘ adj‘ 1 R1 R2 R3 ¨ ¨ ¨

¨ ¨ ¨ R1 1 ` “ 1 ` “ 2 ` “ 3

[Cederwall, Palmkvist: 1804.04377]



If g is infinite-dimensional, or if g is finite-dimensional and

pλ, θq ě 2, where θ is the highest root, then the generalised

diffeomorphisms only close up to ancillary g transformations.

In order to describe these cases we need to replace the

Borcherds superalgebra B with a tensor hierarchy algebra.

[Cederwall, Palmkvist: 1711.07694, work in progress ...]



The tensor hierarchy algebra is a Lie superalgebra that can be

constructed from the same Dynkin diagram as B, but with

modified generators and relations: (i “ 1, 2, . . . , r)

f´1 Ñ fp´1qi

rh0, f´1s “ f´1 Ñ rh0, fp´1qis “ fp´1qi

re´1, f´1s “ h´1 Ñ re´1, fp´1qis “ hi

§ The simple root α´1 has multiplicity 1 as usual, but its

negative has multiplicity r.

§ The bracket rei, fp´1qjs may be nonzero. Not only positive

and negative roots, but also mixed ones appear.

[Palmkvist: 1305.0018] [Carbone, Cederwall, Palmkvist: 1802.05767]



To be better understood:

§ The tensor hierarchy algebras . . .

§ The gauge structure when ancillary transformations

appear, first when gr is finite-dimensional, second when gr

is infinite-dimensional . . .

§ The dynamics: Under control when gr`1 is affine.

Maybe also when gr itself is affine and gr`1 hyperbolic?

(Henning’s talk)

Obvious direction for further research: towards gr “ E11


