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Stochastic heat equation

∂tu =
1
2

∆u + λV (t , x)u, x ∈ Rd ,d ≥ 3.

Here, V (t , x) is random field, molification of space-time white noise:

V (t , x) =

∫
Rd+1

φ(t − s)ψ(x − y)dW (s, y),

For simplicity, we always take φ, ψ compactly supported with ψ
isotropic.
Rescale: uε(t , x) := u( t

ε2 ,
x
ε ) satisfies

∂tuε =
1
2

∆uε +
λ

ε2 V (
t
ε2 ,

x
ε

)uε. uε(0, x) = u0(x) ∈ Cb(Rd ).

The noise ε−2V ( t
ε2 ,

x
ε ) does not converge to white noise Ẇ - rather to

εd/2−1Ẇ .
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The Feynmann-Kac representation

∂tu =
1
2

∆u + λV (t , x)u

u(t , x) = Ex
B

(
u0(Xt ) exp(λ

∫ t

0
V (t − τ,Bτ )dτ)

)

In particular, if V is white in time, can be made into a martingale (in t) using
time reversal and substraction of the (deterministic) quadratic variation.

∂tu =
1
2

∆u + λV (t , x)u

u(t , x) = Ex
B

(
u0(Xt ) exp(

∫ t

0
V (t − τ,Bτ )dτ − λ2t

2
RV (0))

)

Advantage: Martingale!
In non-white in time case, the correction term is itself not deterministic.
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∂tuε = 1
2∆uε + λ

ε2 V ( t
ε2 ,

x
ε )uε.

Special case: V - white in time, u0 = 1.

Theorem (Mukherjee, Shamov, Z. ’16)
There exits λ∗ ∈ (0,∞) so that:
• (Weak disorder) For λ < λ∗, solutions converge weakly in distribution
to a deterministic limit, and uε(x) converges to a random variable
Z∞ > 0.
• (Strong disorder) For λ > λ∗, uε(0)→ 0 in probability.

In this talk, we focus on the weak disorder phase, and try to
understand better the convergence.
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∂tuε = 1
2∆uε + λ

ε2 V ( t
ε2 ,

x
ε )uε.

Back to non-white in time. λ < λ0 < λ∗

Theorem (Ryzhik, Gu, Z. ’17)
There exist c1, c2 depending on λ such that for any t > 0 and g ∈ C∞c (Rd ), we
have ∫

Rd
uε(t , x) exp

{
− c1t

ε2 − c2

}
g(x)dx →ε→0

∫
Rd

ū(t , x)g(x)dx ,

1
εd/2−1

∫
Rd

(uε(t , x)−E[uε(t , x)]) exp
{
−c1t
ε2 −c2

}
g(x)dx ⇒ε→0

∫
Rd

U(t , x)g(x)dx

in distribution. ū - solution of effective heat equation

∂t ū =
1
2
∇ · aeff∇ū, ū(0, x) = u0(x),aeff ∈ Rd×d

sym effective diffusion,

U solves the additive stochastic heat equation

∂tU =
1
2
∇ · aeff∇U + λνeffūẆ , U(0, x) = 0, ν2

eff > 0 effective variance
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∂tuε = 1
2∆uε + λ

ε2 V ( t
ε2 ,

x
ε )uε.

∂t ū =
1
2
∇ · aeff∇ū, ū(0, x) = u0(x),

Heat equation

∂tU =
1
2
∇ · aeff∇U + λνeffūẆ , U(0, x) = 0,

Edwards-Wilkinson equation (additive noise).
Mostly probabilistic methods, more below.
Related results: Magnen-Unterberger ’17, applies to Hopf-Cole
transform (KPZ) and gives same EW limit. Different methods.
Mukherjee ’17 averaged CLT; Comets, Cosco, Mukherjee ’18 rates of
convergence to limit Z∞, fluctuations from limit. (White in time noise).
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Some homogenization...

∂tuε = 1
2∆uε + 1

ε2

(
βV ( t

ε2 ,
x
ε )− λ

)
uε,uε(0, x) = u0(x).

Rename variables:

∂tu =
1
2

∆u + (βV − λ)u, (1)

u(0, x) = u0(εx). Denote by Ψ solution of (1) with u0 = 1. Recall that ū
is (weak) limit of homogenized equation ūt = (aeff/2)∆ū.

Theorem (Dunlap,Gu,Ryzhik,Z. ’18)

For β < β0 < β∗ there exist λ = λ(β) and a stationary solution Ψ̃(t , x)
so that

lim
t→∞

E |Ψ(t , x)− Ψ̃(t , x)|2 = 0.

Further,
E |uε(t , x)− ū(t , x)Ψε(t , x)|2 →ε→0 0

where Ψε(t , x) = Ψ(t/ε2, x/ε).
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E |uε(t , x)− ū(t , x)Ψε(t , x)|2 →ε→0 0

where Ψε(t , x) = Ψ(t/ε2, x/ε).

Ofer Zeitouni Stochastic Heat Equation August, 2018 7 / 18



Some homogenization...

∂tuε = 1
2∆uε + 1

ε2

(
βV ( t

ε2 ,
x
ε )− λ

)
uε,uε(0, x) = u0(x).

∂t u =
1

2
aeff∆u, u(0, x) = u0(x).

Introduce the corrector

“∂su1(t , x , s, y) =
1
2

∆yu1(t , x , s, y) + (βV (s, y)− λ)u1(t , x , s, y)

+∇y Ψ(s, y) · ∇xu(t , x)′′

not quite..

Theorem (Dunlap,Gu,Ryzhik,Z. ’18 - second order convergence)

0 ≤ β < β0, g ∈ C∞c (Rd ), γ ∈ (1,2). For any ζ < (1− γ/2) ∧ (γ − 1),
there exists C > 0 so that

Var

(
ε−d/2+1

∫
g(x) [uε(t , x)−Ψε(t , x)u(t , x)− εuε1(t , x)] dx

)
≤ Cε2ζ .
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2∆uε + 1
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βV ( t
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)
uε,uε(0, x) = u0(x).

Recall the Edwards-Wilkinson limit:

∂tU =
1
2
∇ · aeff∇U + λνeffūẆ , U(0, x) = 0,

Theorem (Dunlap,Gu,Ryzhik,Z. ’18 - effective noise strength)

ν2
eff =

aeff limε→0
∫ ∫

g(x)g(x̃)
(

1
εd−2 Cov

(
Ψ̃
(

0, x
ε

)
, Ψ̃
(

0, x̃
ε

)))
dx dx̃

c̄β2e2α∞
∫ ∫

g(x)g(x̃)|x − x̃ |2−d dx dx̃

where α∞ has an explicit representation.

Weak version of

Cov(Ψ̃(0,0), Ψ̃(0, y)) ∼ c̄β2ν2e2α∞

aeff|y |d−2 , y � 1

An expression for aeff in terms of a solvability condition for a second order
corrector is also available.
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Theorem (Dunlap,Gu,Ryzhik,Z. ’18 - effective noise strength)

ν2
eff =

aeff limε→0
∫ ∫

g(x)g(x̃)
(

1
εd−2 Cov

(
Ψ̃
(

0, x
ε

)
, Ψ̃
(

0, x̃
ε

)))
dx dx̃

c̄β2e2α∞
∫ ∫

g(x)g(x̃)|x − x̃ |2−d dx dx̃

where α∞ has an explicit representation.

Weak version of

Cov(Ψ̃(0,0), Ψ̃(0, y)) ∼ c̄β2ν2e2α∞

aeff|y |d−2 , y � 1

An expression for aeff in terms of a solvability condition for a second order
corrector is also available.

Ofer Zeitouni Stochastic Heat Equation August, 2018 9 / 18



Some homogenization...

∂tuε = 1
2∆uε + 1

ε2

(
βV ( t

ε2 ,
x
ε )− λ

)
uε,uε(0, x) = u0(x).

Recall the Edwards-Wilkinson limit:

∂tU =
1
2
∇ · aeff∇U + λνeffūẆ , U(0, x) = 0,
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The white in time case I

∂tu =
1
2

∆u + λV (t , x)u

u(t , x) = Ex
B

(
u0(Xt ) exp(

∫ t

0
V (t − τ,Bτ )dτ − λ2t

2
RV (0))

)
In law, after rescalling and reversing time, and recalling that
V (t , x) =

∫
Rd φ(x − y)Ẇ (t ,dy), need to compute

ûε(0) = EB

(
exp(λ

∫ t/ε2

0

∫
Rd
φ(y − Bs)Ẇ (s,dy)− λ2

2ε2 V (0))

)
,

where V (x) =
∫
φ(x − y)φ(y)dy

Martingale, link with polymer measures.
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The white in time case II

For λ small, can do L2 computations: for example,

E(ûε(0)2) = EB,B′
(

exp(λ

∫ t/ε2

0

∫
Rd
φ(y − Bs)Ẇ (s,dy) +∫ t/ε2

0

∫
Rd
φ(y ′ − B′s′)Ẇ (s′,dy ′)− λ2

ε2 V (0))
)

Because φ is compactly supported, this involves the total time that two
independent BM’s spend at bouded distance from each other. In
dimension d ≥ 3, this has exponential moments.
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The white in time case III

ûε(0) = EB

(
exp(λ

∫ t/ε2

0

∫
Rd
φ(y − Bs)Ẇ (s,dy)− λ2

2ε2 V (0))

)
= EBΛε

Λε is a map from a X × Y to R where X = C(R+;Rd ) supports the
Wiener measure P0 and Y is a Gaussian space with measure G.
Define the measures dQε/(dP0 × dG) = Λε(x , y). Note that ûε = E0Λε,
i.e. random “total mass” of Qε. Example of a Gaussian Multiplicative
Chaos.
From general theory, convergence will occur if (and only if) ûε is
uniformly integrable; If not, it will converge to 0!
Similar arguments go back to random polymer measures:
Comets-Yosida ’05, ..
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The limits, I

We only work in the L2 phase.
Define the measure P̂ and normalization constant ζ:

ζt := log EB

[
exp

{λ2

2

∫
[0,t]2

R(s − u,Bs − Bu)dsdu
}]
,

ÊB,t [f (B)] := EB

[
f (B) exp

{λ2

2

∫
[0,t]2

R(s − u,Bs − Bu)dsdu − ζt

}]
.

We will see that ζt ∼ c1t + c2. On the other hand, rescaling,

E[uε(t , x)]e−ζt/ε2 = ÊB,t/ε2 [u0(x + εBt/ε2 )]

Thus, we need to show that εBt/ε2 converges to a Brownian motion.
The main computational tool is a general Markov device, coming from the
theory of Doeblin chains, described next.
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Independence decomposition

Suppose that {Xn} is a Markov chain, on an abstract space X , with
transition probabilities π(x ,dy) satisfying

π(x ,dy) ≥ pµ(dy)

for some probability measure µ and p > 0.
Then

∑n
i=1[f (Xi)− Estatf (X )]/σf

√
n satisfies the invariance principle.

{Xn} can be constructed as follows: let {Bn} be a collection of iid Bernolli(p). Then write

Xi = Bi Yi + (1− Bi )Zi

where Yi are iid,∼ µ, and Zi , conditioned on history, is distributed as∼ (π(Xi−1, dy)− pµ(dy))/(1− p).

Apply it here to pieces of paths of length 1: Xi = {Bi+t}t∈(0,1).
Asymptotics of ζt from Krein-Rutman.
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The Edwards-Wilkinson limit I

Define Φt,x,B(s, y) :=
∫ t

0 φ(t − r − s)ψ(x + Br − y)dr , and martingale

Mt,x,B(r) :=

∫ r

−∞

∫
Rd

Φt,x,B(s, y)dW (s, y), 〈Mt,x,B〉r =

∫ r

−∞

∫
Rd
|Φt,x,B(s, y)|2dsdy .

Then, by the Clark-Ocone formula,

(u(t , x)− E[u(t , x)])e−ζt = λ

t∫
−1

∫
Rd

ÊB,t

[
u(0, x + Bt )Φt,x,B(r , y)

exp
{
λMt,x,B(r)− λ2

2
〈Mt,x,B〉r

}]
dW (r , y).
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The Edwards-Wilkinson limit I

(u(t , x)− E[u(t , x)])e−ζt = λ

t∫
−1

∫
Rd

ÊB,t

[
u(0, x + Bt )Φt,x,B(r , y)

exp
{
λMt,x,B(r)− λ2

2
〈Mt,x,B〉r

}]
dW (r , y).

Aε :=

∫
Rd

g(x)(u(t , x)− E[u(t , x)])e−ζt = λ

∫ t/ε2

−1

∫
Rd

Z ε
t (r , y)dW (r , y)

Writing the time integral as sum over intervals (of length ε−β with β < 2) with
short deletions (of order ε−α, α < β) essentially represents Aε as sum of iids,
hence need only to understand variances.
Computing variances involves expectation with respect to pairs of Brownian
motions B,B′, under the measure P̂. Note that the interaction involves only
compact (in time) intervals: Bt interacts only with B′t+s, |s| ≤ 1.
More explicitly:
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The Edwards-Wilkinson limit II

Jε(M1,M2) = λ2
∫ M1

−1

∫ M2

−1

Rφ(u1,u2)Rψ(x1 − x2 + ∆B1
t−r
ε2 −s1,

t−r
ε2 +u1

−∆B2
t−r
ε2 −s2,

t−r
ε2 +u2

)du1du2.

Iε =
2∏

i=1

g(εxi + y − εBi
t−r
ε2 −si

)u0(εxi + y + ε∆Bi
t−r
ε2 −si ,

t
ε2

)

Variance involves computing

1
εd−2E

[∫ t2/ε2

t1/ε2

∫
Rd
|Z ε

t (r , y)|2dydr

]

=

∫ t2

t1

∫
R3d

∫
[0,1]2

ÊB1,B2,t/ε2

[
IεeJε( r

ε2 ,
r
ε2 )
] 2∏

i=1

φ(si )ψ(xi ) ds̄dx̄dydr .

Proceed now with the Doeblin trick to compute the expectation.
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Stationary limits and correctors

∂t Ψ =
1
2

∆Ψ + (βV − λ)Ψ,Ψ(0, x) = 1.

To show convergence to stationary solution, start at −S and show
convergence by computing L2 norm of difference starting from different
(large) S - again, use F-K and decoupling of chains.
Corrector construction: formally, write

uε(t , x) = u(0)(t , x , t/ε2, x/ε)+εu(1)(t , x , t/ε2, x/ε)+ε2u(2)(t , x , t/ε2, x/ε)+ · · ·

From variance computation, u(0) = ū(t , x)Ψ(t/ε2, x/ε).
Formally,

∂su1(t , x , s, y) =
1
2

∆y u1(t , x , s, y) + (βV (s, y)− λ)u1(t , x , s, y)

+∇y Ψ(s, y) · ∇xu(t , x),which solves

u1(t , x , s, y) =
d∑

k=1

ζ(k)(s, y)
∂u(t , x)

∂xk
, ∂sζ

(k) =
∆

2
ζ(k)+(βV (s, y)−λ)ζ(k)+

∂Ψ(s, y)

∂yk
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uε(t , x) = u(0)(t , x , t/ε2, x/ε)+εu(1)(t , x , t/ε2, x/ε)+ε2u(2)(t , x , t/ε2, x/ε)+ · · ·

From variance computation, u(0) = ū(t , x)Ψ(t/ε2, x/ε).
Formally,

∂su1(t , x , s, y) =
1
2

∆y u1(t , x , s, y) + (βV (s, y)− λ)u1(t , x , s, y)

+∇y Ψ(s, y) · ∇xu(t , x),which solves

u1(t , x , s, y) =
d∑

k=1

ζ(k)(s, y)
∂u(t , x)

∂xk
, ∂sζ

(k) =
∆

2
ζ(k)+(βV (s, y)−λ)ζ(k)+

∂Ψ(s, y)

∂yk
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Slightly modify the above by taking the forcing only at discrete times along a
sequence jε−γ , γ ∈ (1,2).
Now evaluate variances, using the Doeblin approach for decomposition.
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