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Multiplicative noise: parabolic scaling

∂tu
ε + H(Duε, x/ε)ξε(t) = 0 in Rd × (0,T ], uε(·, 0) = u0 ∈ BUC (Rd)

H : Rd × Rd → R convex, coercive, locally Lipschitz,

stationary with finite range dependence, ..., or

periodic

ξ : [0,∞)→ R piecewise C 1, independent of H, stationary, mean zero,
uniformly bounded, and “sufficiently mixing”

ξε(t) :=
1

ε
ξ
( t

ε2

)
ε→0−−→ dB in distribution,

B is a Brownian motion.
The equation arises from scaling ∂tu + H(Du, y)ξ(t) = 0 by
uε(x , t) ≈ εu(x/ε, t/ε2).
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Homogenization result for multiplicative noise

∂tu
ε + H(Duε, x/ε)ξε(t) = 0 in Rd × (0,T ], uε(·, 0) = u0 ∈ BUC (Rd)

Theorem

There exists convex H : Rd → R such that

uε
ε→0−−→ u ∈ BUC (Rd × [0,T ]) in distribution

where u is the stochastic viscosity solution of

du + H(Du) ◦ dB = 0 in Rd × (0,T ], u(·, 0) = u0.

u is defined in the Lions-Souganidis stochastic viscosity sense (unique
extension of the solution operator to continuous paths)

Benjamin Seeger (University of Chicago) Scaling limits Durham Symposium 2018 3 / 8



Example: Front Propagation


Γεt = ∂Ωε

t ⊂ Rd , normal velocity
1

ε
v
(
n,

x

ε
,
t

ε2

)
,

v(n, y , t) = a (n, y) ξ(t), a ∈ C 0,1(Sd−1 × Rd ;R+)

a is stationary, finite range dependence, p 7→ a(p/|p|, y)|p| convex

level set method: Ωε
t = {uε(·, t) > 0}, ∂tu

ε = a

(
Duε

|Duε|
,
x

ε

)
|Duε| ξε(t)

Then, for some Lipschitz, deterministic a : Sd−1 → R+ with

p 7→ a(p/|p|)|p| convex, uε
ε→0−−→ u in distribution

du = a

(
Du

|Du|

)
|Du| ◦ dB(t),

describing motion of an interface Γt with normal velocity a(n)dB
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General problem with multiplicative noise

Applies to more general problems:

uεt + H (Duε, x/ε) ζ̇ε(t) = 0,

H ∈ C 0,1(Rd × Rd) convex, coercive

C 1([0,T ]) 3 ζε ε→0−−→ ζ ∈ C ([0,T ]) uniformly

Solutions of
∂tU

ε ± H(DUε, x/ε) = 0

converge quantifiably to solutions of

∂tU ± H(DU) = 0
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Additive noise: hyperbolic scaling

H ∈ C 0,1(Rd) convex, superlinear, f ∈ C 2(Rd) stationary-ergodic,
nonconstant random field, independent of Brownian motion B
0 ≤ σ ≤ 1,

duε + H (Duε) dt = εσf (x/ε) dB, uε(·, 0) = u0

Scaling critical case is σ = 1/2 (arises from hyperbolic scaling)
If σ < 1/2, the oscillations are too fast, and

uε
ε→0−−→ −∞ locally uniformly in distribution

In distribution,

uε(x , t) . εσ−1/2 inf

{
ε

∫ t/ε

0
f (γs)dBs : γt/ε = x/ε, |γ̇| ≤ M

}
.

There exists such paths γ for which

lim sup
ε→0

ε

∫ t/ε

0
f (γs)dBs < 0 (law of large numbers)
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Future work

Goal: if uε solves

duε + H (Duε) dt = ε1/2f (x/ε) dB, uε(·, 0) = u0,

then uε → u where, for some H > H,

∂tu + H(Du) = 0, u(·, 0) = u0.

If ξ is the mixing field from before,

ξε(t) =
1

ε1/2
ξ(t/ε),

and uε solves
∂tu

ε + H(Duε) = ε1/2f (x/ε)ξε(t),

then such a result holds (Schwab 2009, Kosygina and Varadhan 2008,
general stochastic homogenization of HJ equations in stationary ergodic
spatio-temporal media)
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Thank you!
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