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We discuss string compactifications on manifolds with SU(n) holonomy by making use of
representation theories of extended superconformal algebras. In particular, string compactification
on K surfaces is discussed in detail. We calculate loop-space indices and show that all ¢=6
superconformal field theories describe string propagation on manifolds with SU(2) holonomy. We
study Gepner’s models based on the tensoring of N =2 minimal series and point out that some of
these models are identified as orbifolds. We also discuss ¢ = 9 superconformal field theories and
their relation to Calabi-Yau manifolds.

1. Introduction

Recently, extended superconformal algebras have received much attention in
connection with string compactifications with space-time supersymmetry [1-6). It is
now well-known that the N=2 or 4 extended superconformal algebra on the
world-sheet is necessary for the presence of space-time supersymmetry after string
compactification [2,3]. In fact, Neveu-Schwarz (NS) and Ramond (R) sectors are
isomorphic in these algebras, and are mapped onto each other by the spectral flow
which is equivalent to the space-time supersymmetry transformation [7,8]. Thus,
space-time bosons and fermions are necessarily paired up into supergravity multi-
plets.

On the other hand, from the study of low-energy supergravity theory, it is
well-known that the compactifying spaces of the string theory must be Ricci flat and
Kihler manifolds [9,10]. In fact, an n-dimensional complex manifold with SU(n)
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holonomy possesses a unique covariantly constant spinor field which generates the
N =1 space-time supersymmetry transformation. Thus, we have the fundamental
relationships among the extended superconformal algebras, space-time supersymme-
try and manifolds with SU(#) holonomy in the analysis of string compactifications.

Manifolds of SU(n) holonomy, however, in general have a considerable amount
of complexity and in cases of practical interest, Calabi—Yau manifolds (n = 3) or
K, surface (n=2), no examples of metrics are known explicitly. Thus, so far the
orbifold limits of these manifolds have been studied extensively [11,12].

Recently, extended superconformal algebras have received much attention in
connection with string compactifications with space-time supersymmetry [1-6]. It is
now well-known that the N=2 or 4 extended superconformal algebra on the
¢; = 0 (vanishing first-Chern-class) manifolds by calculating the massless spectra of
his models.

Geometrical aspects of the compactifying manifolds are explicit in orbifold
models, while the superconformal symmetry is manifest in Gepner’s models. Thus,
they are somehow complementary to each other. It turns out, however, that they
sometimes coincide as we shall see in the following discussions.

In this article we make an extensive study of string compactification on ¢; =0
manifolds by using the representation theory of N =2 and N = 4 superconformal
algebras. In particular, we will concentrate on the case of the K, surface where we
can use the results of N = 4 representation theory which has recently been worked
out [13,14]. We shall calculate the loop-space index [15-17] and show that all ¢ =6
superconformal field theories describe string propagation on K ; manifolds.

In sect. 2 we make use of Gepner’s models and describe how to construct
modular-invariant partition functions of the non-linear 6-model on the K ; surface.

We calculate loop-space indices in sect. 3 and show how the theory reproduces
known topological invariants of K, manifolds. In sect. 4 we discuss heterotic string
compactification and its massless particle spectra. We make a detailed comparison
of the orbifold and Gepner’s models in sect. 5 and point out that models based on
the tensoring of N =2 minimal series with levels k<4 are all identified as
orbifolds. In particular, the 2* model is identified both as a Z, and a Z, orbifold.
Similarly, the 1%4? model is identified as a Z, and a Z, orbifold. In sect. 6 we
discuss ¢ = 9 superconformal field theories and discuss their relation to Calabi-Yau
manifolds. Some basic formulas of ¥ =2 and N =4 representation theories are
summarized in appendices A and B.

2. Non-linear s-model on K, surface

Let us discuss string propagation on ¢; = 0 manifolds using the representation
theory of N =2 and N =4 algebras. We will concentrate on the case of the K,
surface. In this section we motivate our discussions making use of Gepner’s models
based on the tensoring of N =2 minimal theories. Results described below, how-
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ever, do not depend on the details of the N =2 models but hold for generic K,
surfaces. Specific examples of the tensoring of N =2 minimal series will be
discussed in detail in sect. 5.

In Gepner’s method, one considers a tensor product k™k>2 ... k™ (k;,,m,EN)
of the N =2 discrete series with levels k,,..., k, in such a way that the central
charge adds up to 3r (n is the complex dimensionality of the ¢, = 0 manifold)

3k
ki +

i

C=Zm‘»

"2 =3n; (2.1)

n=2 for the K, surface and 3 for the Calabi—Yau manifolds. In ref. [S] sixteen
possibilities of eq. (2.1) with ¢ = 6 are listed, which describe string propagation on
K, surfaces with a variety of complex structures. For a catalogue of Calabi-Yau
cases, ¢ = 9, see ref. [18].

A special feature of the N =2 algebra is the isomorphism of the algebra under a
continuous shift of the moding of the supercharge operators [8]. One can check that
the algebra remains invariant under the transformation

L,-»L,+nJ,+ %mf 3, 0>
J, = J,+3end, o,

G,—G

r+n?
G~G,,. (22)

Here L,, J,, G, and G, are the Virasoro, U(1) current and supercharge generators,
respectively, and 7 is an arbitrary real parameter. Thus, in particular, the R and NS
sectors are isomorphic to each other (n =1 and r€ Zor Z + ). The shift n >+ 3
corresponds to the space-time supersymmetry transformation [7]. In fact, when
¢ = 3n, the ground state h=Q =0 (h and Q are the eigenvalues of L, and J,) of
the NS sector is mapped onto the states with A= in, Q= + 1n in the R sector,
which correspond to the covariantly constant spinor fields on the Calabi-Yau or K,
manifold.

On the other hand, under a shift 7 = n + 1, the theory comes back to its original
sector. The highest weight states of the algebra are, however, transformed onto
different highest weight states. The ground state of the NS sector is now mapped
onto the states with A= 3n, Q= +n in the NS sector which correspond to the
holomorphic or anti-holomorphic n-form of the Calabi—Yau or K; manifold. The
generators of the transformation An= +1 are conformal fields with 2= }n and
Q = +n, and in the case of n =2, i.e. K; surface, they are nothing but the SU(2)
currents J* (note the factor 2 difference in the U(1) charge and the third
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component of the isospin J,=2J;). When the N =2 algebra is extended by the
addition of the flow generators J *, one obtains the N = 4 superconformal algebra.
Thus, the string compactifications on the K, surface are described by the represen-
tation theory of N =4 algebra. On the other hand, when n =3, i.e. the case of
Calabi-Yau manifolds, the flow generators are fermionic (h= 3 and Q = +3) and
their addition to N =2 gives a new algebra which will be discussed in sect. 6.

Partition functions of Gepner’s models are expressed in terms of the character
functions of the N =2 algebra [4,25]. The N =2 characters are defined by
tr gLo~</24 ¢i% and the angle § keeps track of the U(1) charge of the representation
contents. The isomorphism of the N =2 algebra (2.2) manifests itself in the
quasi-periodicity of 6 in the character formulas. In fact, the shift n > 9+ 3
corresponds to § — § + =7 and we have

ch)S5(r; 0 +77) = q"/24e‘ico/6ch[,‘",’;(f; ), (2.3)

where /, m label the representations of the level-k minimal theories (0 </<k,
—l<m<l, I—m=0 (mod 2)). Under a “full” shift n »>n+1or § -8+ 277

chly (750 +2m7) = q /Se ikt (1 8), (2.4)

which holds in both NS and R sectors. Explicit forms of the N =2 discrete
characters and their modular properties are described in the appendix A.

Let us now concentrate on the case of the K, surface and describe a method of
constructing the modular-invariant partition functions. For the sake of illustration,
we consider the 1° model defined by taking 6 copies of the k£ =1 minimal theory.
There exist three representations, /=m=0, I=m=1, I= —m=1, in the k=1
theory and we denote their characters (in the NS sector) as A, B and C, respectively.
Under the spectral flow (2.4) A, B and C are cyclically permuted among each other.

Now we introduce a flow-invariant combination

NS, = A®+ B®+ C¢, (2.5)

which we call the “graviton” orbit. Eq. (2.5) contains the identity operator (h =
Q = 0) which generates the graviton multiplet in the heterotic string compactifica-
tion.

SU(2) symmetry acts on the flow-invariant orbit (2.5) and hence the N =2
symmetry is enhanced to N =4. Therefore NS, can be decomposed into the
representations of N = 4 algebra.

Highest weight states of the N =4 algebra are parametrized by the conformal
dimension 4 and isospin /. Unitarity puts a restriction 4 >/ in the NS sector and
h > L in the R sector (when ¢ = 6). There exist two distinct classes of representations
of the N =4 algebra [13]); massless and massive representations. The massless
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representations exist at the unitarity bound

h=l=0a
{h=l= 1, in NS sector, 246)
h= l, I=0a
n . (2.7)
h=1%, [=1, inR sector,

Ground states of the R sector carry a non-zero Witten index in these representations
and they possess unbroken N =4 world-sheet supersymmetry. The massless repre-
sentations keep track of the non-trivial topology of the K, surface. On the other
hand, the massive representations exist in the range

h>0, [=0, in NS sector,

h>% I=1, inRsector, (2.8)

and have ground states with the equal number of bosons and fermions, and thus
have vanishing Witten index. They describe the degrees of freedom of deformation
of the K, surface. Under the spectral flow, a NS representation with isospin / is
mapped onto a R representation with isospin 3 — /.

The graviton orbit (2.5) contains the /= 0 massless character and an infinite sum

of massive characters

NS, (7;z) =chP(I=0;7;2)+ Y, fOch™(h=n;1;2)

n=1
=chy5(I=0;7;z) + F(7)ch™S(h=0;7; z), (2.9)
F(r)= X %" (2.10)

n=1
(For the explicit form of N = 4 characters, see appendix B.)

Under the modular transformation S: 7 — —1 /7, NS, transforms into a family of
new orbits

NS, = A’B3 + B3C3 + CA3,
NS, = A?B2C2,

NS, = A*BC + B*CA + C*AB. (2.11)
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The matrix S;; of the S-transformation

1 6
NS,(7;0) = ZSUNS/-(——;—)e""’z/z”7 (2.12)
T

can be computed from the S-transformation of the N = 2 subtheories (see appendix
A). In the case of 1° theory S, is given by

L[3 e 2 %
I R S Y B

Si=mi1 2 e -6 (2.13)
3 6 -s54 9

There are, in general, three types of NS orbits in the K, compactification. They alil
possess integral values of the U(1) charge.
(1) Graviton orbit:
NS, is the only trajectory containing the ground state A= Q =0.
(2) Massless matter orbits:
NS, (i=2,...,d) contain states h =1, Q = +1 and are rewritten as

NS;(7;2) =ch}S(I=1; 7, z)+ F(7)ch™(h=0;7; z),

o0

F(r)= X £"". (2.14)

n=1

(In some cases, states h =1, Q= +1 appear more than once in one orbit. Then
chfS(/=1) in eq. (2.14) must be multiplied by the multiplicity. We ignore this
complication in the following.)

(3) Massive orbits:
NS; (j=d+1,...,d +d’) contain massive characters only

DN NS(J — (1. -
NS,(7;z) = F;(7)ch™S(h=0; 7; 2),

0
E(1) =" % f", 0<reQ. (2.15)
n=0

In egs. (2.10), (2.14) and (2.15) the expansion coefficients f,("™ are non-negative
integers. The number of orbits, d and d’, and the functions F,, depend on the
tensoring of subtheories.
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In the case of 16, d=2, d’=2 and

Fi(1)=5¢+29¢*+80¢°+ ...,

F(1)=5¢+26¢>+85¢°+ ...,

Fy(7)=q*?(1+5¢+20g>+59¢° + ...),

F(r)=¢"*(1+16g+38¢*+1274° + ...). (2.16)

These d + d’ trajectories enter into the modular-invariant partition functions.

Using the symmetry property of the S-matrix of subtheories, it is easy to show

that the S-matrix of orbits (2.12) is symmetrizable by a diagonal matrix D with
integral elements D,

D;S,;=D;S; (nosumoni,j), (2.17)
with
Sy
=l o1 d+d (2.18)
S

(D is normalized as D, =1). In the case of 1° theory D, = (1,20,270,30). D,’s are
essentially the combinatorial factors in the tensoring of representations

D (combinatorial factor of orbit i) X (standard length of orbits) (2.19)
- (length of orbit i) S

The standard length of orbits of k™...k[™ is the least common multiple of
ki +2,...,k,+2.

The matrix D is the key ingredient in the construction of modular-invariant
partition functions. Indeed, it is easy to check, using (2.17) and S? =1, that

Y D,(NS)*(NS,) (2.20)

i=1
is S-invariant. The sum of D, for massless matter orbits always adds up to 20
d
3 D, =20, (2.21)
i=2

in K, compactification. This is the Hodge number 4! and it gives the multiplicity
of massless spinors in the 56 of E, in heterotic string compactification. We will
derive eq. (2.21) in the next section.
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The structure of the trajectories in the other sectors is determined by the spectral
flow. By shifting 6 by 77 and =7+ 7 in eq. (2.12), we find that

—f 1 6
R,(7;8)= ZS,-,NS,«(— -, —)e"‘"’/z’”, (2.22)
T 7T
_ (16
R,(ri0) =~ L8, &~ i Jemem, (223)

where NS and R are NS and R sectors with (—1)* insertion and R ,(8) gives the
Witten index I; at #=0. Since I;= -2, [;=1 (i=2,...,d), ;=0 (j=d+

1,...,d+ d’) (see appendix B), the S-matrix has an eigenvector (—-2,1,...,1,0,...,0)
with eigenvalue —1

YS81=—1I,. (2.24)

The modular-invariant partition function of the non-linear ¢-model on the K,
surface is then given by (in the case of A-type invariant)

d+d
Z,=3 ¥ D,{INS|*+ NS>+ [R,|>+ |R,}. (2.25)

i=1
The Euler number is equal to

d+d’ d
x= 2, DI?=4+ ) D,=24. (2.26)
i=1 i=2

3. Loop-space index

Functions F,(t) (i=1,...,d+ d’) depend on the tensoring of N =2 subtheories
and thus are dependent on the complex structure of the K, surface. In order to
characterize general aspects of K, compactifications, it is convenient to introduce
topological invariants which are independent of the complex structure or the moduli
of the K, surface. In this section we consider the loop-space indices [15-17] (or
elliptic genera) which are string-theoretic generalizations of classical topological
invariants.

We introduce

@(/‘E) EtTNSquLO_V“(—l)FLqZO 14, (3.1)

where the trace is taken by imposing the NS and R (with (—1)* insertion) boundary
conditions on the right- and left-moving sectors of the theory, respectively. ®(4) is
the elliptic genus generalizing the Dirac index A4 [16]. Eq. (3.1) may be easily
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evaluated making use of the non-linear o-model. If we use the representations of
N = 4 massless characters, (B.8) and (B.9), we find that

o(4) =L D(NS)(R,).

={4””(_2+ijaﬁu)+gfluﬁuhﬁ(%g%)-(1”

n

We can explicitly compute (3.2) by using any of the tensorings of N = 2 models and
find that they all give the same result. Thus ®(A) is in fact common to all K,
compactifications. Calculation is easy in the 2 theory and we obtain

O(A)=2 7 o

(ﬂf—&ﬂ(ﬂjz

= —q /4(2-40g"%-124g +...), (3.3)

eq. (3.3) may also be derived directly from (3.1); we note that the boundary
condition of di(/f) is invariant under the transformations S and T2 (T: 1> 7+ 1)
and thus @(A) is a modular form invariant under T, the level-2 principal congru-
ence subgroup. This fact uniquely determines @(A) up to an overall constant (this
constant is fixed by comparing the first terms in the g-expansion). Eq. (3.3) agrees
with the calculation of the elliptic genus for K ; by using the theory of characteristic
classes.

If we compare the g-expansions of egs. (3.2) and (3.3), we find that ¥, D,1? = 24
(eq. (2.26)) and the theory reproduces the Euler number of the K ; surface. Thus the
¢ = 6 superconformal field theory describes the string propagation on K ; manifolds.
Our only assumption in sect. 2 is the absence of the mixture of /=0 and /=3
massless representations. If there is a contribution of the /= { representation in the
graviton orbit, then the interference term ch (/= 0)*chy(/ = 3) gives primary fields
with conformal dimension A=0, h= 5. These are nothing but free (complex)
spinor fields and in this case the theory describes string propagation on the product
of complex tori T X T. This is actually what happens in Gepner’s models 1322,
122%(10")! and 1!(10")? (10’ means the use of the E, type invariant for the k =10
subtheory).

In this context we shall note that the function Fj(7) in the graviton orbit
generates (anti-) holomorphic fields of type (k, ) = (n,0) or (0, n), n=1,2,... . In
particular, if f® # 0, it generates extra U(1) gauge fields in the heterotic string
compactification (see sect. 4).
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Instead of eq. (3.1) we may impose the R boundary condition in the right-moving
sector and define

®(0) = trg,p g™/ 4(—1) g2, (3:4)
Eq. (3.4) can also be evaluated using the non-linear o-model

?(0) = Z Di(Ri)(Ri)

={‘f1/8 +xh3(7)}(32(7))
n

By(7 2
X(ﬂaz"';) . (3:5)

Comparing eq. (3.5) with eq. (3.2) we obtain

-2+ Z D,IF(

i=1

o) =2 %) (ﬂz

. —) =16(1+34g+...). (3.6)
N n

®(0) is the elliptic genus corresponding to the Hirzebruch signature o.
Finally, if we insert (—1)/® into eq. (3.4), we obtain the Euler characteristic

B(x) = trg, g (—1) " gl 1/45Lo-1/4

=) DI’=24. (3.7)
Actually, these three genera may be combined into a single function
D(0) = trygur g e (—1)igho 14, (3-8)

@(ff), ®(o) and D(x) are given by ®(8) at § =0, #7 and 77+ 7, respectively.
Thus, the classical topological invariants are nicely “unified” in the superconformal
field theory.

By making use of the elliptic genus, it is possible to separate the partition
function into two parts; one of them, Z,,, is the topological part which is
independent of the moduli of the K, surface. The other piece, Z,.m, depends on
the moduli and varies as one deforms the complex structure of the K; manifold.
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After some algebra we find that

Zo = Zlop + chform ’ (39)
4 2 4
o B, 0 n
Zo,=24xX1Y1—| +1(®(4)-cec. ( ) —cc.||—
top 2; '&3 Z( ) ) IT};Z 193
4 4 4 8 8 4
1 [[P2 333, By " | F2| | N LZ\ﬁ (3.10)
2 1’2 nZ nz 7] 7] 2 i n > .
g Ve 2y -1/8 2 asa g V3 2
Zesorm = (1+Fl) —2hs| + Z D, F, +hy| + z Dj 5
i=2 j=d+1
9,
xgzl—’ (3.11)
P

Here the sum over i is i = 2, 3,4. Terms involving the function /4; may be separated
in Zy.torm using eq. (3.2), and it may be rewritten as

B

NERS )
Zde!ormz(_24|h3|2+{h;(p(’4)(:?—) +C'C-})%Z]—_’
i M

3

~1/8 2 q+a’

-1/8
+ Y p|F?
i=2

+ (1+Fl)q

F (3.12)

n

2
8,
);z —
i 1m

At generic points in the moduli space, holomorphic factorization does not take
place. The second term of eq. (3.12) is replaced by a more general structure

4

hp,—1/8=h, —1/8
qrg 1
—_— , (3.13)

S L

In|> p

P,

M

Z C'I m

where ¢,,, are non-negative integers and h,, h, >0, h,—h, € Z.

4. Heterotic string compactification

Let us now turn to the discussion on the heterotic string compactification on the
K, surface. In this case we must take into account the degrees of freedom of

the uncompactified six-dimensional Minkowski space and the internal space in the
left-moving sector.
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In the right sector of the theory, N = 4 characters are multiplied by the characters
of the SO(4) Kac-Moody algebra which is generated by the four (transverse) spinor
fields of the uncompactified Minkowski space (four uncompactified bosons generate
an additional (1)~ *). The orbits are given by

Xr,i(2) = x3°@(2)NS(2) + x3°“(2)NS; (2)
xR, (2) = xPPD(2)R](2). (4.1)

Here NS*= (NS + ﬁ), R*= LR + R) and b, v, s, ¢ are the conjugacy classes of
the level-1 representations. Eq. (4.1) is written as

)= 5[ B2 ws o - (242 W0 - (22 o

n
+( 1(2)) R,-(z>}, (42)
n

<

where we have used

SO(2n) SO@2n) _ e ’ SO@2n) SO@2n) — %, "
Xb +XU - ; ] Xb ~—Xv - ; »

X50@n | 350G _ (ﬁ) , xSoen _ysoan _ (Lﬂl) ‘ (4.3)
= n
On the other hand, in the left sector the N = 4 characters are multiplied by those of
the Eg and SO(12) Kac—Moody algebras which describe the degrees of freedom of
the internal space. Note that the standard E, X E; gauge symmetry of the heterotic
string is broken down to Eg X E, in the K; compactification. The SU(2)’ gauge
symmetry in

E, D SU(2)’ X E, D SU(2)’ x SU(2) x SO(12) (4.4)

is lost due to the holonomy of the K, surface while the SU(2) symmetry of N =4
algebra is combined with SO(12) and generates the E, gauge group.
The orbits in the left sector are given by

Xy, ,(2) = (X3P (2)NS} (2) + x5 (2)NS; (2)
+x2P()R(2) + X3P ()R] (2))x1*(2), (45)

= l[(?ﬁ) NS,-(Z) + ('84(2)
7 n

_ ) S5(2)

1 9,(z2) *

i

l92(2) 9,(z) ¢
o2 ) R

) R;(z)+
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Xgr,; and X ; are constructed in such a way that they transform under S as in
equation (2.12) with the same S-matrix. GSO projections in egs. (4.1) and (4.5)
ensure the correct spin-statistics connection. Modular invariants are formed as

const.
- ——= = Y D (X )X 47
Z= Gy = 2w (X)) (4.7)

It is easy to see that the right-moving orbits (4.2) actually vanish and hence the
theory has zero cosmological constant. We first note that the N =4 massive
characters are proportional to the squares of elliptic theta-functions (B.11)

ChNS(Z)(Il(ﬂS(Z)) , Chﬁg(z)(xl({h(Z)) ,

n n n

chR(z)ocl(m) , ch®(2) ocl(ﬂl(z)) . (4.8)
n\ 7 n\ 1

Thus, the contributions of the massive representations vanish in each orbit (4.2) due
to the Jacobi identity. It is easy to see that also the contributions of the massless
representations cancel in the right sector.

On the other hand, in the left-moving sector of the theory, the massive representa-
tions in X; (z) are combined into Eg characters

L 0,(2)"xF(2) @ (xFr(2))". (4.9)

Thus, the massive sector of the theory does not feel the holonomy of the K, surface
and retains the original Eg X Eg symmetry. On the other hand, massless components
of each orbit are expressed as a sum of E, characters, and we have

-1/8
X, = {Al,l(f)xlﬁ’(Z)+A1,z(7)x’§é(2)+—n-Fl(r)xf“(Z)}xf*(Z), (4.10)

-1/8

Xi= {Az,z('r)x?é(Z) + Ay (7)xi7(2) + E(T)XF“(Z)}XF“(Z)- (4.11)

n

Here A,;.1 4, ,,(7) are the branching functions of N =4 massless characters into
those of SU(2) (see appendix B) and we have used

xi7(2) = x3°0P (2)x?V9(2) + x3°0P(2) X399 (2), (4.12)
x52(2) =x3°02(2)x37P(2) + x PP (2) VP (2) . (4.13)

(Indices of the characters represent the multiplicity of the highest weight state.)



206 T. Eguchi et al. / Superconformal algebras

The massless spectra of the theory are easily read off from eqs. (4.10), (4.11) and
(B.14). Besides the standard gravity, E, gauge multiplets and 20 spinors of 56 of E,,
there exist X¢_, D,(2 + f{?) gauge singlets coming from the massless matter orbits.
If £+ 0, there also appear additional f{" U(1) gauge fields from the graviton
orbit. At generic points in the moduli space of the K surface, & D,(2 + f{”) = 130,
f¥=0, while in N=2 and orbifold models there always exists an extra U(1)
symmetry ( f{V > 0) and an excess of gauge singlets ¥ D,(2 + f{”) > 130. The elliptic
genus ®(A) predicts, however, that their difference ¥ D,(2 + f{”) — 2" must be
always equal to 130.

5. Orbifolds

We now turn to the orbifold models of K, compactification and discuss their
relation to the models of Gepner. It is known [20] that there are four possible types
of orbifold limits of the K, surface with the symmetry group Z;, /=2, 3, 4 and 6.
They are defined by dividing the product of complex tori 7} X 7, by the action of
Z[

7o e¥/ly . oz, e M, 1=2,3,4,6. (5.1)

Conical singularities appear at the fixed points of the transformation (5.1).

Note that a holomorphic and anti-holomorphic 2-form, dz; A dz, and dz; A dz,,
exist on orbifolds (invariant under (5.1)) and together with the harmonic (1,1)-form
dz, A dz, —dz, A dz, they generate SU(2) symmetry. Thus, the N = 4 algebra acts
on Z, orbifolds. Z, orbifold with /=3,4,6 has an additional harmonic form
dz, Adz, + dz, A dz, which generates an extra U(1) gauge symmetry in heterotic
string compactification. Z, orbifold, on the other hand, has extra U(1)® symmetry
corresponding to the forms dz; A dZz; +dz, AdZ,, dz; AdZ, and dz, A dzZ,.

Basic building blocks of the orbifold partition functions are given by (in the NS
sector)

(0 + (s+rr)/1)5(0 = (s+rr)/1)
191((s+r7-)/1)2

r,s=0,1,...,1-1 ((r,s)#(0,0)). (5.2)

frs(7,8) =

’

Eq. (5.2) describes the product of partition functions of a pair of complex fermions
and bosons twisted by " and «° (@ = e?"/!) in the spatial and temporal directions,
respectively. 8 is the U(1) angle as before. Note that two complex fermions have
opposite Z, charges (see eq. (5.1)). The partition function of orbifold models (of the
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NS sector) is then given by

Z n" S‘-f" S(o | + Z]atuce’ (5‘3)

where coefficients n, ; are defined by

1 o oms\*
n0.5=7(25m7) , (5.4)
and the symmetry relations
nr,s nr,:+r’ nr,:=ns,l—r' (55)

Y’ means the sum over r, s with (r, 5) # (0,0). One can check that for each value of
r the sum over s in eq. (5.3) gives a projection onto states with zero Z, charge. The
lattice part of the partition function is given by

y 1

lamce E q

W Inl

(5.6)

n

where wy, w; are weight vectors of a (real) four-dimensional lattice where the action
of Z, symmetry is well defined. Explicitly, they are parametrized as

m
Wy = (2R —-b,Ryn,|e*+nRe,, (5.7)
m;
wy = IR, —b,Ryn, le* —n.Re,, (5.8)
where m;, n, (i= .,4) are integers and R, (i=1,...,4) are the radii. Vectors

e,eX are dual to each other, e;e* =34, . The metric of the lattice is given by
g, =ee, (e? is normalized to 1) and b, ;; is the anti-symmetric tensor field. There
are restrictions on the possible forms of g; , b,; due to Z, symmetry.

The partition functions in other sectors are again given by the flow of 8. It is
convenient to rewrite f, () as

£ c(0)—( (5.9)

(8 )) +[03((””)/1)]2(03(0))2
#5(0) 3 ((s+rr)/1) %(0) |
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The elliptic genus @D(/f) of orbifolds can then be easily evaluated as

fl

—34Y 0, f (8=0)f*(8=n1+7) (5.10)

r,s

. [03((s+n)/z)r

o(4)

=L, ((s+rr)/l) (5.11)

r,s

We can express the ratio (#;/9,)? in terms of the Weierstrass Zfunction and the
sum over r, s (5.11) then becomes /-independent and agrees with eq. (3.3),

S CXCECT) TR TN

H((s+rr)/1) n* 'n

r,s

Thus, the orbifold models in fact describe compactifications on the K, surface. The
parameters involved in the specification of their lattices constitute the moduli of
orbifold models. The number of moduli is 8 for Z,, Z, and Z,, and 16 for Z,
orbifold.

Let us now turn to the discussion on the relation between Gepner’s models and
orbifolds. We first consider 2* and 1'2%4! theories and compare them with Z,
orbifolds. After somewhat lengthy algebra which makes use of N =2 discrete
characters, we find the following partition functions

2 |
Z(1'2%1) = | y g L
SU(3) x SU(2)? lattice 7]
9,0, 1 |98 1 [940,]) 1 "9,- !
X=2|—|, (513)
7’ n? 7 2~
P 5 1
2(24) —_ % E qu/quL/z_8
SO(8) lattice (7]
8,0, 1% 190,00 |99, 19
o = = x5 X2 (5.14)
n n n 2 Tlm

We recognize the familiar structure of the Z, orbifold [21]; 5T, ,19,8,/7%* gives
the sum over Z, twisted sectors.

In eq. (5.13), SU(3) lattice is defined by V2e,=a, (simple roots of SU(3),
normalized as a?>=2) and R,=1/y2 (i=1,2). The anti-symmetric tensor b, ; 1s
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put to b, = —b, = — 1. It turns out that the lattice sum equals the sum over
level-1 representations of SU(3)

ZSU0G) — Z wn/ qw;_/Z J—
SU@3) lalnce | |

= IXEUOP + XU+ XSO (5.15)

Here, x5V®’s are the SU(3) characters (x$U® = (0,10, + 05,0, 1)/7% x5 =

x50 = (0,40, + 0, 30, ,)/7%). Similarly the SU(2) lattice of eq. (5.13) is defined
as V2e=a (simple root of SU(2)) and R=1/y2. SU(?2)? gives a (complex)
1-dimensional square lattice. The lattice sum again equals the sum over level-1
representations

ZSU(z) = Z qu/ q"’L/Z_2
SU(2) lattice | |

= X271+ [x37?1%. (5.16)

When the radius of the lattice equals 1/ V2, there occurs symmetry enhancement
due to the Frenkel-Kac mechanism. In fact, 1'2%4! theory has SU(2)? X U(1)? extra
gauge group [5]. It turns out that the partition function of the theory 24'(10")! is
identical to that of 11224 theory (5.13). Furthermore, their lattice sum, ZSY® x
(ZSY®)2) agrees with the partition functions of the models 1322 and 122}(10")!
which describe string propagation on the product of tori. Thus 1'2%4! = 214}(10")!
models are the Z, twisting of the theories 1°2% = 122'(10")!

{12241 = 2'4'(10')'} = Z, twisting of {1°22=122'(10)'}. (5.17)
On the other hand, SO(8) lattice of eq. (5.14) is defined by y2 e, = a, (simple roots

of SO(8), i =1,...,4) but with the radius R, =1 (i=1,...,4) (b;;= 0). The lattice
sum is given by

A A L X
4 2Y3 3V4 4Y2
750(8) %[(lxlsua)|2+ 1X§U(2)|2) +—= - 5 . (5.18)
n n n
We note a relation [26]
4
750(®) _ (ZSU(Z) Z M 5.19
) + | ] (5.19)
w>v
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Eq. (5.19) leads to a remarkable phenomenon; the 2* theory can also be identified
as a Z, orbifold. In fact

S (RS
SU(2)* 1attice Inl

:

and 3%, . ,|9,8,/7°|* gives precisely the sum over Z, twisted sectors. Thus, Gepner’s
model 2* sits at the intersection of the moduli space of Z, and Z, orbifolds (see
fig. 1a).

We have made further identifications of Gepner’s models (see fig. 1b). From both
analytical and numerical analyses, we find that

4 4 4

3,9,

nZ

9,9,

,'72

3,9,

nl

4
>

(5.20)

1|9,
X_ —_—
] 2;!71

16 theory = 14! theory
= Z, orbifold with SU(3) x SU(2)’ lattice, (5.21)
1242 theory = Z, orbifold with SU(3)” lattice
= Z, orbifold with SU(3) X SU(3)’ lattice, (5.22)
43 theory = Z 4 orbifold with SU(3) x SU(3)’ lattice. (5.23)

Here SU(3) lattice is the SU(3) lattice with the radius R; replaced by R, = 1. Note
that 1242 is also identified as two different types of orbifolds, Z, and Z, at the same
time. The above list, egs. (5.13), (5.14) and (5.17) and eqs. (5.21)—(5.23) exhausts all
N =2 models consisting of subtheories with the level & < 4.

24 — 1242

214101 = 1! 241
o' =12 o a1 .

2, Zi 2,

(@ b Zs

Fig. 1. The relation between Gepner's models and the orbifolds. Moduli spaces of orbifolds are
represented symbolically by straight lines.
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6. ¢ =9 superconformal field theories

In this section we discuss ¢ = 9 superconformal field theories and their relation to
Calabi—Yau manifolds. As we have mentioned in sect. 2, for a systematic treatment
of ¢=9 theories we need to study an enlarged version of the N =2 algebra
extended by the addition of the flow generators. The flow generators, denoted as X,
X, have h=13 and Q= +3 and their commutators with G, G generate additional
operators Y, Y with =2, Q = +2. These generators, together with L, J, generate
an algebra which contains bilinear terms in the right-hand side of commutation
relations. This is a non-Lie algebra of the type introduced by Zamolodchikov [19]
and we call it as the ¢ =9 algebra.

Commutation relations of the ¢ =9 algebra have recently been worked out [22].
Among its commutators, important ones are given by

{Xr’ Ys} = (r2_ %) 8r+s.0 + (r_s)']r+3+ (Jz)r+s, (6-1)
[X,.Y,]=(r+1)G.,n+(JG),im, (6.2)
[X.%,]=(r+3)Gn=(IG),im> (6.3)

(¥, %] =3n(n* = 1) 8,10+ $(n(n+ 1) + m(m+ 1))/,
+i(n=m)(J?) = (m+ DL, +(JL),\p
—3(GG) - (6.4)
We also record

(/7). X] =3(n—2r) X, .. (6.5)

Here the bilinear forms of operators are defined with the normal ordering; (4B), =
i ApB,_,+ X, (- 1)"Blj,,_pAp (h, is the conformal dimension of A).
Inside the ¢ = 9 algebra, L, J, G, G form the standard N = 2 algebra with ¢ =9 and
1y2 17.1/V3 X and 1/V3 X form an additional N = 2 algebra with ¢ = 1. We note
that the latter is isomorphic to the algebra of Waterson [28].

The ¢=9 algebra is again invariant under a transformation which shifts the
moding of the operators G, G, X and X, and thus the NS and R sectors of the
algebra are isomorphic to each other.

It follows from eqgs. (6.1) and (6.5) that the allowed values of # and Q of the
highest weight states are given by (in the NS sector).
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Massless representations:

h=0, Q=0,
h=3, ©0=1, (6.6)
h=3, Q=-1.
Massive representations:
h>0, =0,
Coo (6.)
h>1, Q=+1.

Under the spectral flow, representations (6.6) and (6.7) are mapped onto the R
representations.
Massless representations:

h=3% Q=4%3,
h=% Q=1, (6.8)
h=1 0=-1.
Massive representations:
h>3, Q=+3.47,
8 Q 2 2 (6.9)
h>3, Q=43

Although precise character formulas of the ¢ = 9 algebra have not yet been worked
out, their dependence on the U(1) angle 4 can be described by the functions

fQ(a) = l Zq3(n+g/3)’/2 e3£(n+Q/3)0. (6.10)
L

In fact these are the only functions whose #-dependence is consistent with the
spectral flow

fQ(ﬂiw'r)=q'3/8e¢‘3‘9/2fQ4_,3/2(0). (6.11)

The f,, with Q0 =0, +1(+3/2, +1/2), give characters of the NS(R) representations
(6.6) and (6.7) ((6.8) and (6.9)) up to factors depending only on 7. We note that

fo—o(8=mm+7)=0, (6.12)
fomr(O=mr+m)y=~f,_ [(=m7+m)

=gq73%/8, (6.13)
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Let us now repeat our analysis of sect. 2 and construct modular-invariant
partition functions of ¢ =9 superconformal theories. If we consider, for instance, 1°
theory, the graviton orbit is given by

NS,(z) = A(z)’ +B(z)’ + C(z)’. (6.14)

An essential difference from the case of the K, surface is that the Witten index of
eq. (6.14) now vanishes

R,(0=0)«NS,(§=nr+7)=0. (6.15)

This is due to the cancellation of contributions from the A= 3, Q= + ; states in
the R sector. (This is related to the fact that the charge-conjugation operator (anti-)
commutes with the helicity operator in 4m(+2) dimensions. Covariantly constant
spinors h=n, Q=+ jn on an n-dimensional complex manifold with SU(n)
holonomy have the same (opposite) helicities when n = even (odd).)

NS, is then expanded as

NS, (; z)= Gl("')(fl(z) +f41(z)) +Hi(7)fo(2), (6.16)
Gi(r)= L g, H(n) =g A1+ Tadgr).  (617)

Other orbits are again generated by the S transformation of the graviton trajectory.
In the ¢ = 9 case, there are four types of NS orbits.
(1) Graviton orbit:
NS, is the only trajectory containing the ground state /= Q = 0.
(2) Massless matter orbits:
NS, (i=2,...,d) contains a state h = 3, 0 =1 and is rewritten as

NS (7:2) =/i(2) + G(7)(N(2) +1(2)) + Hi(7) fo(2),  (6.18)

G(r)= X g’", H(r)=q"* ¥ hidg". (6.19)
n=1

n=1

Orbit i is paired with its conjugate orbit i* =i+ d— 1. NS.(7;8) is given by
NS,(; 8) with 8 replaced by —6

NS.(m;z)=f_y(z) + G.‘("')(fl(z) +f—1(Z)) +H(7)fo(2), (6.20)

NS.. contains a state h =3, Q= —1.

(In some cases, a state h= 3, Q=1 or —1 appears more than once in each orbit.



214 T. Eguchi et al. / Superconformal algebras

Then, the first terms in the right-hand-side of eqs. (6.18) and (6.20) must be
multiplied by the multiplicity.)

(3) Self-conjugate massless orbits:
NS; (j=24d,...,2d + d’ — 1) contains both states h = 1 and Q= +1 and is self-
conjugate. It is rewritten as

NS, (732) = G () () +14(2)) + H (1)), (621)
G()=1+ Lge",  H()=q ThPg".  (622)

(4) Massive orbits:
NS, (m=2d+d’,...,2d+d’' + d"”) does not contain any of the states 1= Q =0,
h=1, Q= +1. It is written as

NS, (7;2) =G, (7)(filz) +f_,(2)) + H, (1) f,(2), (6.23)
G,(1)=q™ ) g™q", H,(r)=q™ Y h{"g", (6.24)
n=0 n=0
Tmsth€Q, 0<r,, —1<r).

These 2d + d’ + d”’ trajectories enter into the modular-invariant partition functions.
In the 1°case, d=2, d’=0, d”" = 3.

As in the case of ¢ =6 theories, modular invariants are formed by using the
D-coefficients which symmetrize the matrix of S-transformation

2d+d' +d”
Z,=% ¥ D{INS2+ NS2+ |R,>+ |R,?}. (6.25)

o
i=1

Note that D,. = D,. The Euler number is given by

x=-2Y D,. (6.26)

(There exists a sign ambiguity in deriving the Euler number by using the Witten
index. In egs. (2.26) and (6.26), we have defined the states h = jn, Q = + jn in the
R sector to be bosonic (fermionic) when »n =even (odd)). In the case of ¢ =9
theories, however, a set of new modular invariants can be constructed from each
“A-type” invariant (6.25). These new invariants have Euler numbers which differ
from (6.26) by 4 X integers as we shall see later.

Let us now consider partition functions of the heterotic string theory in the ¢ =9
case. They are constructed by multiplying SO(2), and SO(10) and Eg4 characters to
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the orbits in the right and left-moving sectors, respectively. The cosmological
constant again vanishes in heterotic string compactification. Orbits in the right
sector are proportional to

‘93fQ - '94]; - '92fQ+3/2 =0,
0=0,+1, (6.27)
where fQE fo(@=m). Eq. (6.27) can be shown to be true by using the product

formula of theta functions. On the other hand, orbits in the left sector are
reexpressed in terms of E, characters

B 1r(ﬂ3 Y 04)} (02)sf (6:28)
xb==ll—|h+t|—]Hh+t|— , .
1 2\, 0 L | 2
1l 8,\° , s 9, 5
ng:E (? fat _—)f—l+ ;)fvz ’ (6-29)
1 9,0 S 8,1}
E
X5e = = —f+——f+(——)f 2 |- 6.30
27 2»(7’ 1 n 1 7 1/ ( )
Partition functions are again formed as
z- ot 3 D, ( Xg (X 6.31
= Gy & 2 (e )X (6:31)

Eq. (6.31) contains the graviton and E, gauge multiplets. There also exist mass-
less scalar multiplets of 27 and 27* of E¢ which come from the combinations
lh=1,0=41)® [h=4%,0=+1) and |h=1,0=+1)® |h=13,0=—1), re-
spectively. Their multiplicities are

d 2d+d' —1

np= 2 D+ Y D, (6.32)
i=2 j=2d
2d+d' —1

ny.= 3 D. (6.33)
j=2d

In Calabi-Yau compactifications they are identified with the Hodge numbers,
ny,=#>' and n,,.=4"!, and are related to the Euler characteristic as x =

2(ny9e = Ny9).
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set of invariants with Euler numbers by varying m;, n;

IXIs Ix] =4, — x| +4, = |x]. (6.40)

In forming D-type invariants (6.35), the left—right pairing of states h= 3, Q= +1

is reshuffled and this corresponds to interchanging the roles of £*! and 4"!. Such a
procedure does not have a well-defined geometrical significance and the modular
invariants (6.38) could not all describe string propagation on Calabi—Yau mani-
folds. It is important to check the consistency of the operator interpretation of
D-type modular invariants.

We thank Prof. A. Hattori and Dr. M. Furuta for discussions on elliptic genera.
We also thank Prof. K. Saito for his lectures on K surfaces.

Note added in proof

Quite recently Vafa-Warner (Harvard preprint, Nov. 1988) and Martinec (Chicago
preprint, Nov. 1988) have proposed an interpretation of Gepner’s models as
describing string propagation on algebraic varieties in (weighted) complex projective
spaces. According to this interpretation 24 and 4° models, for instance, describe
strings compactified on K, surfaces defined by z{ + z3 + z3 + z§ = 0 (Fermat sur-
face) and z{ + 28+ 2§ + z7 = 0, respectively (association of 2* model with Fermat’s
surface is originally due to ref. [5]).

Our results in sect. 5 then imply that partition functions of strings compactified
on some algebraic varieties coincide with those on orbifolds. Thus our analysis gives
rise to examples of different points in the moduli space of K, surface being
described by identical conformal field theories.

Appendix A

DISCRETE REPRESENTATIONS OF N =2 ALGEBRA
Unitary representations of N = 2 superconformal algebra in the region 0 < ¢ <3
exist at [1,23]
3k

- k=1.23..... Al
Tk 2 (A.1)

Their highest weight states are characterized by the conformal dimension 4 and
the U(1) charge Q. In the NS sector their allowed values are

I(1+2)—m?
ILm™ 4(k+2) ) (A2)
O m= 7 (A.3)
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where 0 </<k, —I<m<I, I-m=0 mod 2. N=2 discrete representations are
intimately related to the parafermion algebra [24]. Their character formulas are
expressed in terms of the A{" string function {*) [4,25]

. K 6
Chl?,sn}k('r; 0)= Z ‘S,k,:,'(”')@(m 2)m’ —mk, k(k + 2)(%73 ‘k—) . (A4)
m'=—k+1 +2
Here 6, , is the level-k theta-function

@m,k(T’a) - qu(n+m/2k)zeik0(n+m/2k). (A.S)

n

Character formulas in the Ramond sector are obtained by the flow from the NS
sector

chlf,sm('r;0+7r1')=q“f/24e*”0/6ch‘,{,m(7;9). (A.6)

Under modular transformation, string functions behave as [27]

a(-2)- (—1—)1/2(1)1/212 gremai /4 sm(ww)cm(f),

<

T k(k+2) T o k+2
(A7)
(I1+2) m? ¢
cﬁ,"fn('r+l)=exp[27ri m—ﬁ—a):lcgkr)"(’r) (A.S)

Egs. (A.7) and (A.8) determine modular properties of the N = 2 discrete characters.
For the unitary representations of the N = 2 algebra in the continuum range ¢ > 3
and their connection to N = 4 algebra, see ref. {14}].

Appendix B

UNITARY REPRESENTATIONS OF N =4 ALGEBRA [13,14]

The N =4 algebra with the central charge 6k contains a level-k affine SU(2)
algebra. N =4 highest-weight states are parametrized by 4 and isospin /. When
¢ =6, k=1, possible unitary representations are:

(1) massless representations

h=1, [=0,3, NSsector,

h=1%1 1=0,1, Rsector;
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(2) massive representations

h>0, [!=0, NS sector,
h>%, I=1, Rsector.

Character formulas are given by:
(1) massless representations

qm—1/2 -1

z
m? /2 —
chy3(1=0;1;2)= Y g™ 1/“z"‘hl T

M, (142" 12) (1 +271g"172)
X

k) (B’l)
I—[n=l(1 - qn)z
2/2-1/4,m 1
chgS(I=14;m52) = Lgm /> V4 Tr2gm 7
1,11 +2¢" ) (1 +27Yg"172) (B2)
X ; .
I—[n=l(1 - q")2
(2) massive representations
2 2
n =1(1 +zqn—l/2) (1 _+_z—1qn—1/2)
S 7 2) = g1/ 1 (8.3)
(him2)=q Mo0-¢7)
Note that from egs. (B.1)—-(B.3)
ch™(h=0) = chi{S(/=0) + 2ch¥S(/=1). (B.4)
R characters are related to NS characters by
chyS(7; 2q'/?)=q V42 TehR (L ~ 1 z). (B.5)

The same relation also holds for the massive characters. The Witten index is given
by the Ramond character at z = —1

l
=3

(B.6)

(51

-2,
chRO(l;'r;z=—1)={1 /

2

ch®(/=1;rz=—-1)=0. (B.7)



220 T. Eguchi et al. / Superconformal algebras

A convenient parametrization of massless characters is given by

$(0)\* (a7 3;(6)\*
NS(/_ 0 r: 7) = — T
chi>(1=0; 7; 2) 2( 133(0)) - ( (7) 2h,( ))( (0 ) , (B.8)
1 3,(0)\° #(0)\°
chyS(1=1;7;2) = —( 013(0)) +h3(7)( 7;(7) ) , (B.9)
where h,(7) is defined by
qml/z-us
()= 00 R T (810
The massive character (B.3) may also be rewritten as
g" "t 03(0))2
WS(h;rz)= ——| ———| . B.11
B (s 73 2) () (n(T) (B-11)

The N = 4 massless characters can be expanded into those of the SU(2) Kac—Moody
algebra

Chlgs(1= 0;7;2) =A1,1("')X15U(2)(T§ z) +A1,2(T)X§U(2)('T§ z), (B.12)
hS(I1=14;7;2) =4, (7)) X3V (75 2) + 4,5 (1) x53PP (73 2) . (B.13)

Branching functions 4,,,, ,,,, have the following g-expansions

2/24
A4 1("') = —4_1/4(1 —q+ 3‘13 + )’
: n(r)

2/24
Ay ()= 20 (2g+4¢°+...),

q¥*
A, (1) = 42429+ 292+ ...),
21(7) et (2+29+2q )

2/24
Ay,(7)= (1+3¢%+44¢°+...). (B.14)

7(7)
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