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A brief introduction to sums of squares

Grigoriy Blekherman

Abstract. We give a brief overview and history of nonnegative polynomials
and sums of squares. This chapter also provides a guide to how the subsequent
chapters connect to this central theory.

This chapter is an informal introduction to the theory of nonnegative polynomi-
als and sums of squares. We assume that the reader is familiar with linear algebra,
and especially with positive semidefinite symmetric matrices. For more details on
these we recommend [6, Appendix A] and [3, Section II.12]. The study of nonneg-
ativity and its relation with sums of squares is a classical topic in real algebraic
geometry, starting with the work of Hilbert, who classified the cases in terms of
degree and number of variables where nonnegative polynomials are always sums
of squares of polynomials (Theorem 3.2). Generalizations of this theorem are the
subject of Mauricio Velasco’s chapter. Hilbert’s 17th problem asked whether any
globally nonnegative polynomial is a sum of squares of rational functions. Artin’s
positive solution of Hilbert’s 17th problem in the 1920’s, using the Artin-Schreier
theory of real closed fields left a lasting imprint on the subject.

The study of the subject changed substantially in the early 2000’s when it was
realized by Lasserre and Parrilo, following earlier work by N.Z. Shor and Choi,
Lam and Reznick, that one can use semidefinite programming to efficiently search
for sums of squares certificates of nonnegativity in practice [9, 14, 19, 25]. The
resulting hierarchies (called Lasserre, moment or sums of squares hierarchies) were
motivated by theorems of Schmüdgen and Putinar on representations of nonneg-
ative polynomials as sums of squares on compact semialgebraic sets (see Section
5). The sum of squares method has many applications in engineering, robotics and
computer science. For more details see Georgina Hall’s chapter.

1. Two guiding questions

How can we decide if a function, for instance a polynomial in one variable, takes
only nonnegative values? Consider for example, p(x) = 5x4 − 4x3 − x2 + 2x + 2. It
is not immediately clear, although quite elementary to show, that p(x) is globally
nonnegative. However, if we write p(x) as a sum of squares of polynomials:

p(x) = (x2 + 1)2 + (2x2 − x − 1)2,

then its nonnegativity is readily apparent.
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This simple example immediately poses two important questions:

(1) Are representations of nonnegative polynomials as sums of squares always
possible?

(2) If a polynomial is a sum of squares, then how can we find a sum of squares
decomposition?

We address the second question first.

2. Finding sum of squares decompositions

Consider a single square (1− 3x + 2x2)2. We introduce two vectors, the vector
of coefficients v = (1,−3, 2)T and the vector of monomials x = (1, x, x2)T . We can
write 1 − 3x + 2x2 as vT x and therefore

(1 − 3x + 2x2)2 = (xT v)(vT x) = xT (vvT )x.

Observe that vvT is a rank 1 positive semidefinite matrix, and any rank 1 positive
semidefinite matrix has the form form vvT for some real vector v. By applying this
procedure to all squares in a sum of squares, we see that any sum of squares p(x)
can be written as

p(x) = xT Ax,

where A is a positive semidefinite matrix. The converse can be established using
the following exercise:

Exercise 2.1. Show that any positive semidefinite matrix A can be written as
a sum of rank A many positive semidefinite matrices of rank one.

Aside on positive semidefinite matrices: Positive semidefinite matrices
form a convex cone in the vector space of real symmetric matrices, which we de-
note by Sn

+. We use notation A " 0 to indicate that a symmetric matrix A is
positive semidefinite. A good reference for the geometry of Sn

+ is given in [3, Sec-
tion II.12]. A slice of this cone with an affine subspace is called a spectrahedron.
An interesting spectraherdon, directly related to univariate sums of squares is the
Hankel spectrahedron, which consists of all positive-semidefinite Hankel matrices
(matrices that are constant on anti-diagonals), with (1, 1) entry equal to 1. For
instance the 3 × 3 Hankel spectrahedron has the form:

H3 =




(x, y, z, w) :




1 x y
x y z
y z w



 " 0




 .

We can think of H3 as a slice of the cone of 3 × 3 cones of positive semidefinite
matrices with a 4-dimensional affine linear subspace given by:



1 0 0
0 0 0
0 0 0



 + x




0 1 0
1 0 0
0 0 0



 + y




0 0 1
0 1 0
1 0 0



 + z




0 0 0
0 0 1
0 1 0



 + w




0 0 0
0 0 0
0 0 1



 .

A matrix is positive semidefinite if and only if all of its principal minors are non-
negative. Therefore the spectrahedron H3 can be defined by algebraic inequalities,
by requiring all principal minors of the above matrix to be nonnegative. For the
relation of Hankel spectrahedra to the problem of moments we refer the reader to
[24]. Cynthia Vinzant’s chapter will explain much more about the geometry of Sn

+

and spectrahedra.
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We note that Exercise 2.1 says, equivalently, that rank 1 positive semidefinite
matrices are precisely the extreme rays of Sn

+. Another interesting consequence of
our observations is that the minimal number of squares needed to write p(x) as
a sum of squares is precisely the minimal rank of any matrix A such that p(x) =
xT Ax. For more information see [10]. The logic above can be easily applied to the
multivariate setting:

Remark 2.2 (Multivariate Polynomials). For polynomials in several variables
we can a form a vector x of multivariate monomials up to a certain degree d. For
instance, if we want to check that a bivariate polynomial of degree 4 is a sum of
squares, the corresponding vector x is (1, x, y, x2, xy, y2). Via the same reasoning,
a bivariate polynomial p(x, y) of degree 4 is a sum of squares if and only if there
exists a positive semidefinite matrix A such that p(x, y) = xT Ax. Furthermore, the
choice of the monomial basis is not canonical, and a different basis of the vector
space of multivariate polynomials of degree at most d may be used to build the
vector x.

2.1. Sums of squares and semidefinite programming: Testing whether
a given polynomial p(x) is a sum of squares can be done efficiently on a computer
using semidefinite programming [6, Chapter 3]. We demonstrate this procedure by
an example that is small enough to do by hand.

Example 2.3. Let p(x) = 5x4−4x3−x2 +2x+2. By the above, p(x) is a sum
of squares if and only if there exists a positive semidefinite matrix A such that

p(x) = xT Ax, A =




a00 a01 a02

a01 a11 a12

a02 a12 a22



 , x =




1
x
x2



 .

A positive semidefinite matrix A such that p(x) = xT Ax is called a Gram matrix
of A. By multiplying xT Ax out and comparing coefficients we get equations

a00 = 2, 2a01 = 2, 2a02 + a11 = −1, 2a12 = −4, a22 = 5.

The matrix A therefore has the form:

A =




2 1 a02

1 −1 − 2a02 −2
a02 −2 5



 .

The choices of a02 that make A positive semidefinite describe the Gram Spectra-
hedron of p(x) [10]. By considering the determinant of A one can check that A is
positive semidefinite for 1

4 (1 −
√

185) ≤ a02 ≤ −1 and the choices of a02 = −1 and

a02 = 1
4 (1 −

√
185) will lead to rank 2 matrices, i.e. ways of writing p(x) as a sum

of two squares. The decomposition from Section 1 has a02 = −1, and consequently,
a11 = 1.

One can ask whether given a multivariate sum of squares p(x) with rational
coefficients there always exists a Gram matrix A filled with rational numbers such
that p(x) = xT Ax? In general, the answer is “no” as shown by Scheiderer in [22].
We now discuss semidefinite programming in general.
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2.2. A primer on semidefinite programming. Semidefinite programming
is a generalization of linear programming where we also allow positive semidefinite-
ness constraints. More precisely, a general semidefinite program has the form:

minimize
X

〈C, X〉

subject to 〈Ai, X〉 = bi i = 1, . . . , m,

X " 0.

The inner product is the trace inner product 〈A, B〉 = tr AB. We note that
if X is restricted to being a diagonal matrix then the above semidefinite program
becomes a linear program, since positive-semidefiniteness constraint only ensures
that the diagonal entries are nonnegative.

Semidefinite programs can be efficiently solved using interior point methods [4].
However, these methods will struggle when the matrix size grows large, and this
becomes quite relevant for sums of squares methods, as seen in the remark below.

Remark 2.4. Observe that the size of the Gram matrix A is given by the
number of relevant monomials (or more precisely the dimension of the vector space
from which squares come). If we want to check whether an n-variate polynomial
of degree 2d is a sum of squares, then x should be the vector of all monomials in
n variables of degree at most d, and therefore the size of A is

(n+d
d

)
×

(n+d
d

)
. As

the number of variables and the degree grows the size of A increases rapidly, and
this is perhaps the greatest practical limitation of the sum of squares method, as
matrices may soon become too large to be effectively handled by SDP solvers.

2.3. Lifted representations. We can define a map Φ which sends a symmet-
ric matrix A to the polynomial xT Ax. Another way of interpreting and generalizing
Example 2.3 is that the map Φ projects the cone Sn

+ to sums of squares, or equiva-
lently, it provides a lifted SDP representation of the cone of sums of squares. For in-
stance, Example 2.3 shows that a univariate polynomial a0+a1x+a2x2+a3x3+a4x4

of degree 4 is a sum of squares if and only if there exists a positive semidefinite
matrix 


a0

1
2a1 b

1
2a1 c 1

2a3

b 1
2a3 a4



 " 0,

where 2b + c = a2. Therefore the cone of univariate sums of squares of degree 4 is
a projection of the cone S3

+ of 3 × 3 positive semidefinite matrices.
One can study, in general, which sets can be written as projections of “simple

sets”, for instance spectrahedra. Such lifted representations allow to us to lift an
optimization problem from a complicated set to the simple set upstairs, where
optimization can be done efficiently. See Hamza Fawzi’s chapter for more on lifted
representations.

3. Nonnegative polynomials and sums of squares

We now discuss in detail the comparison between nonnegative polynomials
and sums of squares. The story begins in 1885 at the Ph.D. defense of Hermann
Minkowski, where David Hilbert was one of the examiners. During his defense
Minkowski claimed that there exist nonnegative polynomials that are not sums of
squares, although he did not provide an example or a proof. Three years later



A BRIEF INTRODUCTION TO SUMS OF SQUARES 5

Hilbert published a seminal paper [12] classifying all cases in terms of number of
variables n and degree 2d for which all n-variate nonnegative polynomials of degree
at most 2d are sums of squares.

We use Pn,≤2d and Σn,≤2d to respectively denote the sets of n-variate nonneg-
ative polynomials and sum of squares of degree at most 2d. We note that both
form convex cones in the vector space R[x]n,≤2d of n-variate polynomials of degree
at most 2d, and dim R[x]n,≤2d =

(n+2d
2d

)
.

Exercise 3.1. Show that Pn,≤2d and Σn,≤2d are closed full-dimensional convex
cones with no lines in R[x]n,≤2d. For a hint see [6, Exercise 4.17].

We now state Hilbert’s 1888 theorem:

Theorem 3.2. Pn,≤2d = Σn,≤2d only in the following three cases:

(1) n = 1, the case of univariate polynomials
(2) 2d = 2, the case of quadratic polynomials
(3) n = 2, 2d = 4, the exceptional case of ternary quartics.

In all other cases there exist nonnegative polynomials that are not sums of squares.

It should be noted that Hilbert did not provide an explicit nonnegative poly-
nomial that is not a sum of squares of polynomials. The first explicit example
appeared only much later and is due to Motzkin [16] (See Exercise 3.5). The main
difficulty of constructing an example is certifying that a given polynomial is globally
nonnegative without relying on a sums of squares decomposition. Motzkin’s idea
was to guarantee nonnegativity via classical inequalities! The Motzkin polynomial

M(x, y) = x2y4 + x4y2 + 1 − 3x2y2

is nonnegative by applying the Arithmetic Mean/Geometric Mean inequality, and
an argument detailed in the exercises below shows that it is not a sum of squares.

Exercise 3.3. The Newton Polytope Np of a polynomial p is the convex hull
of the vectors of monomial exponents that occur in p. For example, the Newton
Polytope of x2+y+1 is the convex hull of vectors (2, 0), (0, 1) and (0, 0). Show that
if a polynomial p =

∑
i q2

i is a sum of squares, then the Newton Polytope of each
qi is contained in 1

2Np. Hint: It helps to consider the convex hull of the Newton
polytopes of qi’s.

Exercise 3.4. Define homogenization p̃ of a polynomial p(x1, . . . , xn) of degree
d by introducing a new variable x0 and multiplying all monomials in p by a power
of x0, so that all monomials have degree d. More formally:

p̃ = xd
0 · p

(
x1

x0
, . . . ,

xn

x0

)
.

Show that p is nonnegative if and only if p̃ is, and the same is also true for sums of
squares.

In view of the above exercise, questions about global nonnegativity and sums
of squares are often studied for homogeneous polynomials, which are also called
forms.

Exercise 3.5. Use Exercise 3.3 to show that the Motzkin polynomial is not a
sum of squares. Also show that the homogeneous polynomial S(x, y, z) = x4y2 +
y4z2 +z4x2−3x2y2z2, constructed by Choi and Lam, is nonnegative but not a sum
of squares.
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Since then many other examples of nonnegative polynomials that are not sums
of squares have appeared, particularly in the work of Choi, Lam and Reznick (see
[21] for a nice overview).

After proving his 1888 Theorem, Hilbert showed in 1893 that any nonnegative
bivariate polynomial is a sum of squares of rational functions. At first, writing

f =
∑(

pi

qi

)2

may seem quite limiting, however observe that if we bring all of the rational func-
tions to a common denominator r then we are writing

f · r2 =
∑

s2
i ,

i.e. we hope to find a square multiplier r2, such that f · r2 is a sum of squares of
polynomials. This is clearly a generalization of writing f as a sum of squares of
polynomials, where we take r to be the constant polynomial 1. In fact we can even
allow sum of squares multipliers, instead of just a single square:

Exercise 3.6. Show that f is a sum of squares of rational functions if and only
if there exists a sum of squares polynomial h such that f · h is a sum of squares of
polynomials.

Hilbert’s 17th problem asked to prove that a nonnegative polynomial in any
number of variables is a sum of squares of rational functions. Artin’s original proof,
which relied on the newly established Artin-Schreier theory of real closed fields, was
purely existential. In particular, it did not provide any bounds on the degree of the
multiplier h [8]. Searching for multiplier h of fixed degree such that f · h is a sum
of squares can also be formulated as a semidefinite program, so it is important for
computations to understand in what degree rational certificates exist.

To this day, our understanding of both upper and lower degree bounds is quite
poor. For the best current upper bound see [15] and for the lower bounds see [5].
For the special case of nonnegative polynomials on curves see [7]. While philo-
sophically, Artin’s solution to Hilbert’s 17th problem provides a quite satisfactory
answer on the power of sums of squares to explain nonnegativity, computationally
much remains unknown. As we are about to see, in applications we usually just use
sums of squares of polynomials, as rational sums of squares often lead to numerical
problems in solving semidefinite programs.

4. Sums of squares and optimization

We briefly discuss the relevance of sums of squares in optimization. We begin
with a crucial observation, that being able to optimize, i.e. minimize or maximize,
polynomials efficiently is equivalent to algorithmically understanding nonnegative
polynomials. Consider the problem of finding the global infimum of a polynomial
p(x):

λ = inf
x∈Rn

p(x).

Then λ is the best lower bound for p, or equivalently, λ is the largest value that we
can subtract so that p(x) − λ is nonnegative. Therefore, if we can efficiently test
whether a polynomial is nonnegative, then we can do optimization.

Unfortunately, the cone of nonnegative polynomials is quite complicated, and
testing nonnegativity of a polynomial is already an NP-complete problem when
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the degree is 4. However, we can replace nonnegative polynomials, with “obviously
nonnegative” polynomials, i.e. sums of squares! What we can compute, in practice,
is instead λ∗, which is the largest value, such that p(x) − λ∗ is a sum of squares.
It is clear that λ∗ is a lower bound for the true infimum λ, and furthermore, very
importantly, the fact that p(x) − λ∗ is nonnegative comes with a sum of squares
certificate.

In applications, we often have problems with additional constraints, but the
idea behind sum of squares approach is the same: we “relax” the intractable set of
nonnegative polynomials with the tractable set of “obviously nonnegative” polyno-
mials, which we construct using sums of squares. More details are given in the next
section. This simple idea has had a profound impact in engineering and theoretical
computer science, see [1, 2, 13] for some examples. For applications of sums of
squares method in optimization see Georgina Hall’s chapter and for applications in
computer science see Ankur Moitra’s chapter.

5. Adding constraints

Suppose that instead of global nonnegativity we want to understand polyno-
mials nonnegative on an algebraic set X in Rn defined by equations g1(x) = · · · =
gk(x) = 0. Such an algebraic set is also called a variety. Since all polynomials gi

are identically zero on X, we have a larger class of “obviously nonnegative” polyno-
mials on X, namely sums of squares and also multiples of gi, which we can multiply
and add together. This leads to an interesting phenomenon of degree cancellation,
which we illustrate by an example:

Example 5.1. Let X = {0, 1} ⊂ R be given by g(x) = x(1− x) = 0. We want
to certify that the function x is nonnegative on X. This is not possible using sums
of squares only, since the degree of x is one. However we can write:

x = x2 + x(1 − x),

so x is “obviously nonnegative” on X.

By considering sums of squares on varieties it is possible to generalize Hilbert’s
1888 theorem, and find more cases of equality between nonnegative polynomials and
sums of squares, even without degree cancellation. See Mauricio Velasco’s chapter
for more details.

This brings us to a very important theorem, which has been crucial for the
development of applications of sums of squares in optimization. If we are allowed
to use degree cancellation, then is it true that any polynomial p nonnegative on a
compact variety X is “obviously nonnegative”? This is false in general (see Exercise
5.5 below), but it is true for strictly positive p.

Theorem 5.2 (Schmüdgen, [23]). Let X ⊂ Rn be a compact real variety defined
by equations g1(x) = · · · = gk(x) = 0 and let f be a polynomial strictly positive on
X. Then f is “obviously nonnegative” on X, i.e. there exist polynomials h1, . . . , hk

and a sum of squares σ such that

f = σ + g1h1 + · · · + gkhk.

Due to the central role that Schmüdgen’s theorem plays in applications in
optimization, we will discuss its statement and applications in detail.
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Degree Truncation: To make Schmüdgen’s Theorem useful for computations
we search for certificates of bounded degree. This means given a degree bound d we
search for h1, . . . , hk and a sum of squares σ such that

deg gihi ≤ d for 1 ≤ i ≤ k and deg σ ≤ d.

This can still be formulated as a semidefinite programming problem, and is referred
to in the literature as Lasserre or Lasserre-Parrilo or sums of squares or moment
relaxation (technically moment relaxation refers to the dual semidefinite problem).

Example 5.3. Let X be the set {−1, 0, 1} ⊂ R given by the equation g(x) =
x(x2 − 1), and let p(x) = 2+x. It is clear that p is nonnegative on X. If we choose
two as a bound for the degree of an “obviously nonnegative” representation, then
p is cannot have a certificate, since we cannot use any multiples of g, and p is not
a sum of squares, since it is not globally nonnegative. We leave it as an exercise to
show that we can show that p is obviously nonnegative with degree bound 4.

Low Degree Certificates: The size of the semidefinite program that needs to
be solved depends on the degree truncation d. Usually, the size of underlying ma-
trices grows quickly with d (cf. Remark 2.4). Therefore, for practical consideration
and from point of view of computational complexity, understanding of low-degree
certificates is paramount. See Ankur Moitra’s chapter for the theoretical computer
science perspective.

Semialgebraic sets: We stated Schmüdgen’s Positivestellensatz only for va-
rieties, but it also holds for semialgebraic sets given by inequalities gi ≥ 0 (such sets
are called basic closed semialgebraic sets). In this case products of gi are obviously
nonnegative, as are sums of squares. An “obviously nonnegative” polynomial on X
has the form ∑

j

σjΠai∈{0,1}g
ai
i ,

where σj are sums of squares. By Schmüdgen’s theorem any strictly positive polyno-
mial on X is “obviously nonnegative”. Under a mild technical assumption Putinar’s
Positivstellensatz [20] guarantees that we do not need to consider products with
more than one gi in them, and we can take “obviously nonnegative” polynomials
of the form:

σ0 +
∑

j

σjgj .

Compactness is necessary: Schmüdgen’s theorem may fail if the variety X
is not compact. For instance consider the case of global nonnegativity, when we
have no constraints and the variety X is Rn. The following Exercise is useful:

Exercise 5.4. Show that if a polynomial p of degree 2d is a sum of squares,
then the degree 2d part of p, i.e. the sum of all monomials of degree exactly 2d
with the coefficients from p, is also a sum of squares. Hint: Use Exercise 3.3.

Consider again the Motzkin form M(x, y, z) = x2y4 + x4y2 + z6 − 3x2y2z2 (or
any homogeneous polynomial that is not a sum of squares). It is now easy to show
that M(x, y, z) + 1 is strictly positive on Rn but is not “obviously nonnegative”,
since M(x, y, z) is not a sum of squares.
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Strict positivity is necessary: If f is only nonnegative on X and is not
strictly positive, then it may fail to be “obviously nonnegative”. The following
example is taken (with minimal modification) from [11]. Let X ⊂ R2 be the curve
defined by the equation g(x) = x4 − x3 + y2 = 0. Then X is a compact subset of
R2 with a singularity at the origin.

Exercise 5.5. Show that the function f(x) = x is nonnegative on X, but f is
not “obviously nonnegative”.

There has been extensive work on additional conditions under which nonneg-
ative polynomials are guaranteed to be “obviously nonnegative” [17,18]. This is
sometimes referred to as “finite convergence” of the sum of squares hierarchy.
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