
1 Introduction

1.1 An example

As a prototype PDE consider

∂u

∂t
=

∂2u

∂x2
or ut = uxx t > 0, 06x61. (1.1a)

We solve this subject to the initial condition

u(x, 0) = u0(x) 06x61, (1.1b)

and the Dirichlet boundary condition

u(0, t) = 1, u(1, t) = 0, t > 0, 06x61 (1.1c)

where in general (1.1a–c) must be solved numerically.

We begin by choosing a time step k and a space step h = 1/J (both “small”) and
then we make some approximations which we hope are sensible:

ut(x, t) ≈ u(x, t + k)− u(x, t)

k
forward difference (1.2a)

ux(x, t) ≈ δu(x, t) :=
u(x + h

2
, t)− u(x− h

2
, t)

h
central difference (1.2b)

ut(x, t) ≈ u(x, t)− u(x, t− k)

k
backward difference (1.2c)

(1.2d)

then using (1.2b) twice

uxx(x, t) ≈
ux(x + h

2
, t)− u(x− h

2
, t)

h

≈ 1

h

[
u(x + h, t)− u(x, t)

h
− u(x, t)− u(x− h, t)

h

]
=

1

h2
[u(x + h, t)− 2u(x, t) + u(x− h, t)] (1.3)

Substitute (1.2a) and (1.3) into (1.1a) and evaluate at x = jh and t = nk then defining
un

j = u(jh, nk) we have the approximate equation for u

un+1
j − un

j

k
≈ 1

h2

[
un

j+1 − 2un
j + un

j−1

]
(1.4)

Now replacing the ≈ by = yields a Finite Difference Scheme for (1.1a)

Un+1
j − Un

j

k
=

1

h2

[
Un

j+1 − 2Un
j + Un

j−1

]
(1.5a)
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called the Forwards Euler method and we approximate the initial and boundary condition
by

U0
j = u0(jh) U0 = 1 and UJ = 0.

which we hope will approximate u well. Notice that we can rearrange (1.5a) into the
form

Un+1
j = µUn

j+1 + (1− 2µ)Un
j + µUn

j−1 where µ =
k

h2
. (1.6)

If we set {Un}j = Un
j j = 1, · · · J − 1 then

Un+1 =


1− 2µ µ 0 · · · 0

µ 1− 2µ µ
. . .

...

0
. . . . . . . . . 0

...
. . . µ 1− 2µ µ

0 · · · 0 µ 1− 2µ

Un +


µ× 1

0
...
0

µ× 0

 .

Suppose we chose to use a Backwards Euler Difference method? Then (after setting
“n = n + 1”) we would arrive at

1 + 2µ −µ 0 · · · 0

−µ 1 + 2µ −µ
. . .

...

0
. . . . . . . . . 0

...
. . . −µ 1 + 2µ −µ

0 · · · 0 −µ 1 + 2µ

Un+1 = Un +


µ× 1

0
...
0

µ× 0


The matrix is a strictly diagonally dominant1 which we can solve using a numerical method
— this is the case for all implicit methods.

This term, typical questions which we hope to answer are:

1. If t = nk, x = jh are fixed as k, h → 0 (obviously n, j →∞) does

Un
j → u(x, t) (≡ un

j ) as k, h → 0

This is called Convergence or rather more precisely Uniform Convergence.

2. Obviously as you decrease k, h the cost of computing to (x, t) increases. How does
the error un

j − Un
j decrease as k, h → 0? This is called Accuracy .

3. Are there better ways of solving (1.1a–c)? This is called Efficiency .

4. For k and h how does the long-term behaviour of Un
j and u(jh, t) compare as

n, t →∞? This is called Asymptotics .

1Such matrices are invertible.
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1.2 Truncation Error

The example in the previous section is typically of a more general case. Consider a PDE
of the form

P (
∂

∂t
,

∂

∂x
)u = f (1.7)

where f is given and P ( ∂
∂t

, ∂
∂x

) is a linear differential operator with respect to both x and
t. Suppose this is approximated by the finite difference scheme

PUn
j = fn

j (1.8)

where P is a linear difference operator (i.e. PUn
j is some linear combination of Um

k , m>0,
k ∈ Z.)

How do we estimate the error?

Definition 1.1
The Local truncation error (LTE) for (1.8) applied to (1.7) is defined to be

T n
j = Pun

j − fn
j (1.9)

where un
j = u(jh, nk) and u is the exact solution of (1.7).

T n
j is the extent to which u fails to satisfy (1.8). Before we do an illustrative example we

have a useful lemma.

Lemma 1.1
Assume u is analytic about (jh, nk) then

un
j+1 − un

j

h
= ux +

h

2!
uxx + · · · (1.10a)

un+1
j − un

j

k
= ut +

k

2!
utt + · · · (1.10b)

un
j+1 − 2un

j + un
j−1

h2
= uxx +

h2

12
uxxxx + · · · (1.10c)

where the derivatives of u on the right-hand side are evaluated at (jh, nk).

Proof. We only prove (1.10c) as the others are a problem on the problem sheet. We
could use Taylor’s theorem and then we would only need a few derivative.

Since u is analytic

un
j+1 = u((j + 1)h, nk) = u + hux +

h2

2!
uxx +

h3

3!
uxx +

h4

4!
uxx + · · ·

un
j−1 = u((j − 1)h, nk) = u− hux +

h2

2!
uxx −

h3

3!
uxx +

h4

4!
uxx − · · ·
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so adding the two equations and noting that un
j = u(jh, nk) we find

un
j+1 + un

j−1 = 2un
j + h2uxx +

2h4

4!
uxx + · · ·

and the result follows upon rearrangement

Example 1.1
In the previous section the PDE

P (
∂

∂t
,

∂

∂x
)u =

∂u

∂t
− ∂2u

∂x2
= 0 = f (1.11)

is approximated by

PUn
j =

Un+1
j − Un

j

k
− 1

h2

[
Un

j+1 − 2Un
j + Un

j−1

]
= 0 = fn

j

and

T n
j =

un+1
j − un

j

k
− 1

h2

[
un

j+1 − 2un
j + un

j−1

]
− 0

where un
j = u(jh, nk) and u is the exact solution of (1.11). Equivalently

kT n
j = un+1

j − (1 + µδ2)un
j ,

which is the error incurred when one step of the Finite Difference Scheme is used to
approximate un+1

j using the exact values for un
j at the n’th time level, where δUn

j :=
Un

j+1/2 − Un
j−1/2 so that δ2Un

j = Un
j+1 − 2Un

j + Un
j−1. We would like T n

j to be small.

T n
j =

un+1
j − un

j

k
− 1

h2

[
un

j+1 − 2un
j + un

j−1

]
=

(
ut +

k

2!
utt + · · ·

)
−
(

uxx +
h2

12
uxxxx + · · ·

)
= O(k) + O(h2)

where O(k) is the order and it simply means that O(k)/k remains bounded as k → 0.

Definition 1.2
A finite difference scheme is consistent with the partial differential equation if

T n
j → 0 as h, k → 0

and is called convergent if
Un

j → u(x, t) as h, k → 0.

where jh = x and nk = t remain fixed.

Example (1.1) shows that the proposed finite difference scheme is consistent, but this does
not always lead to convergence.
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Example 1.2
Consider the first order equation

ut + ux = 0. (1.12a)

In the region t > 0, x ∈ R (with no explicit boundary conditions), subject to the initial
conditions

u(x, 0) = u0(x) =

{
1 if x < 0

0 if x>0
(1.12b)

note that the exact solution is
u(x, t) = u0(x− t)

check it! Consider approximating (1.12a) by

Un+1
j − Un

j

k
+

Un
j+1 − Un

j

h
= 0.

Rewriting this leads to

Un+1
j = (1 + λ)Un

j − λUn
j+1 where λ =

k

h
(1.13a)

subject to the initial condition

U0
j =

{
1 if j < 0

0 if j>0
. (1.13b)

We now check for consistency. Assuming that u is analytic from (1.10a) the local trunca-
tion error is

T n
j = (ut +

k

2!
utt + · · · ) + (ux +

h

2!
uxx + · · · )

= O(k) + O(h) → 0 as k, h → 0.

That is the scheme is consistent. To see that (1.13a,b) does not converge to (1.12a,b) I
will prove that Un

j = 0 for all j>0. Note that U0
j = u0(jh) = 0 for all j>0. We now use

induction and assume the hypothesis. Let j>0, then from (1.13a)

Un+1
j = (1 + λ)Un

j − λUn
j+1 = 0.

Now noting that u(0, nk) = u0(0− nk) = 1 it follows that

0 = Un
0 6→ 1 = u(0, nk) as k → 0, n →∞

where nk is fixed. So we have shown that we don’t have convergence; note that u is not
analytic. Look at how the characteristic moves.

Example 1.3
ut = uxx, u(0, t) = u(1, t) = 0, u(x, 0) = x(1− x). Using separation of variables you can
show that

u(x, t) =
∑
k odd

(
2

kπ

)3

e−k2π2t sin(kπx)
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note the smoothing property and decay to zero. We solve ut = uxx using the forward
Euler method in time and second order in space. We take k = C?h

2 and h = 1/32 where
C? = 1.6, 0.4, notice that something goes wrong! Notice that if we solve the linear ODE,
yt = ay, y(0) = 1 using the forward Euler with k = T/n then

yn+1 = yn + akyn, y0 = 1 =⇒ yn = (1 + ak)n

now

yn =

(
1 +

aT

n

)n

→ eaT = y(T ) as n →∞.

So there is something different between linear ODE’s and linear PDE’s.

2 Numerical Linear Algebra

Basics

? Matrix A with (real or complex) elements aij: A = (aij).

? The Transpose of the matrix A is denoted by AT where (AT )ij = aji.

? The Hermitian conjugate of the matrix A is denoted by AH where (AH)ij = aji.

? The product of A and B which are m× n and n× p matrices respectively is

(AB)ij =
n∑

k=1

aikbkj.

? We denote the n element column vector v; vi are the elements of the column vector.

? The row vector is denoted by vT .

? The inner product for real/complex vectors is: (u, v) =
n∑

i=1

uivi.
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? A Symmetric matrix satisfies AT = A.

? A Hermitian matrix satisfies AH = A.

? A Unitary matrix satisfies AHA = I.

? An Orthogonal matrix satisfies AT A = I.

Matrix Diagonalization

Two n×n matrices A and B are similar if there is an invertible matrix (i.e. non-singular)
n× n matrix C such that

B = C−1AC.

? Similar matrices have the same eigenvalues.

? A square matrix which is similar to a diagonal matrix is said to be diagonizable.

? The eigenvalues of a diagonal matrix are its diagonal elements.

? An n × n matrix is diagonizable if and only if it has n linearly independent eigen-
vectors.

? A non-diagonizable matrix is said to be defective (i.e. doesn’t have enough eigenvec-
tors). Eigenvectors corresponding to different eigenvalues are linearly independent
so a matrix can be defective if and only if it has at least one multiple eigenvalue.

? An n×n real symmetric matrix has n real eigenvalues and n orthogonal eigenvectors.
The same result is true of a Hermitian matrix.

Theorem. 2.1 (Schur decomposition) Let A be an n×n complex matrix with eigenvalues
λ1 → λn. Then there is a unitary matrix, U , such that UHAU is upper triangular with
diagonal elements λ1 → λn in any order we choose.

Corollary 2.2 If A is a Hermitian matrix then A is diagonizable, has n real eigenvalues
and n linearly independent eigenvectors.

Finite Dimensional Matrix Norms

Let X be a vector space over a field F and x ∈ X. The norm of x is a non-negative
number, ‖x‖, with the properties

1. ‖x‖>0 ∀ x ∈ X and ‖x‖ = 0 iff x = 0.

2. ‖cx‖ = |c|‖x‖ ∀ x ∈ X and ∀ c ∈ F.
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3. ‖x + y‖6‖x‖+ ‖y‖ ∀ x, y ∈ X.

Examples. Suppose (X, F) = (Rn, R) or (Cn, C) with x = (x1, · · · , xn)T , real or complex:

(a) ‖x‖1 =
n∑

i=1

|xi|, (b) ‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

, (c) ‖x‖∞ = max
16i6n

|xi|.

A matrix norm has the following properties:

1. ‖A‖>0 for all matrices A, and ‖A‖ = 0 if and only if A = 0.

2. ‖αA‖ = |α|‖A‖ for all matrices A and scalars α.

3. ‖A + B‖6‖A‖+ ‖B‖ for all matrices A and B.

4. ‖AB‖6‖A‖.‖B‖ for all matrices A and B (a desirable property).

A matrix norm and vector norm are said to be consistent (compatible) if

‖Ax‖6‖A‖.‖x‖ for every n× n matrix A and n-vector x.

For each vector norm, an induced matrix norm (subordinate) is defined as

‖A‖ = sup
‖x‖6=0

‖Ax‖
‖x‖

= sup
‖x‖6=0

∥∥∥∥ Ax

‖x‖

∥∥∥∥ = max
‖x‖=1

‖Ax‖.

A vector norm and its induced matrix norm are always consistent, see any NA book.

1. ‖A‖∞ := max
‖x‖∞=1

‖Ax‖∞ = max
i=1→n

n∑
j=1

|aij|.

2. ‖A‖1 := max
‖x‖1=1

‖Ax‖1 = max
j=1→n

n∑
i=1

|aij|.

3. ‖A‖2 = max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

(
xHAHAx

)1/2
=
√

ρ(AHA), where ρ(B) = maxi |λi(B)|

is called the spectral radius of the matrix B.

4. The Frobenius norm ‖A‖F =

(
n∑

i=1

n∑
j=1

|aij|2
)1/2

is consistent with ‖ • ‖2 but is not

an induced norm.

Proof. 1. Since ‖x‖∞ = maxi=1→n |xi| = 1, then

‖Ax‖∞ := max
i=1→n

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣6 max
i=1→n

n∑
j=1

|aij|.‖x‖∞ = max
i=1→n

n∑
j=1

|aij|.
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The above inequality may be attained by a particular choice of y. Let p be chosen

so that
n∑

j=1

|apj| = max
i=1→n

n∑
j=1

|aij|. If A is real, then define y (‖y‖∞ = 1) by

yj =

{
1 if apj>0

−1 if apj < 0
=⇒ (Ay)p =

n∑
j=1

apjyj =
n∑

j=1

|apj|6‖A‖∞.

2. Since ‖x‖1 =
∑n

i=1 |xi| = 1, then

‖Ax‖1 =
n∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣6
n∑

i=1

n∑
j=1

|aij|.|xj| =
n∑

j=1

|xj| max
j=1→n

n∑
i=1

|aij| = max
j=1→n

n∑
i=1

|aij|.

The above estimate is attainable. Let p satisfy
n∑

i=1

|aip| = max
j=1→n

n∑
i=1

|aij|, define

yj =

{
1 if j = p

0 if j 6= p
=⇒ ‖y‖1 = 1 and ‖Ay‖1 =

n∑
i=1

∣∣∣∣∣
n∑

j=1

aijyj

∣∣∣∣∣ =
n∑

i=1

|aip|6‖A‖1.

3. AHA is Hermitian; it has n real non-negative eigenvalues λ1, · · · , λn and n orthonor-

mal eigenvectors u1, · · · , un. Every n-vector can be expressed as x =
n∑

i=1

αiui. If

‖x‖2 = 1 then
n∑

i=1

|αi|2 = 1 and AHAx =
n∑

i=1

αiλiui so that

xHAHAx =
n∑

j=1

αju
H
j

n∑
i=1

αiλiui =
n∑

i=1

λi|αi|26 max
j=1→n

λj

n∑
i=1

|αi|2 = max
j=1→n

λj.

Let λp = maxj=1→n λj and x = up then xHAHAx = uH
p AHAup = λp = ρ(AHA).

Theorem. 2.3 (a) For any consistent matrix norm ρ(A)6‖A‖.

(b) If λ is an eigenvalue of A, then λm is an eigenvalue for Am (m = 0, 1, . . .).
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Convergence of sequences and series

Let A be a square matrix. The sequence {Am} converges iff lim
m→∞

Am = 0.

Theorem. 2.4 (Convergence) Let ‖.‖ be a consistent matrix norm. The sequence {Am}
converges if and only if ρ(A) < 1.

Theorem. 2.5 The series I + A + A2 + · · · converges if and only if lim
m→∞

Am = 0.

Corollary 2.6 Let ‖.‖ be a consistent matrix norm. If ‖A‖ < 1 then {Am} converges
and I + A + A2 + · · · converges.

3 Linear Equations

Indirect methods for solving Ax = b

We consider iterative methods which, given x(0), yield the sequence {x(k)} generated by
the linear one-point iteration scheme

x(k+1) = Mx(k) + c (k = 0, 1, . . .).

An iteration is said to be consistent with the solution of Ax = b iff {x(k)} converges to
x and x is the stationary iterate.

If aii 6= 0 for i = 1 → n two consistent one-point methods are Jacobi’s iteration and
Gauss-Seidel iteration which are given by

x
(k+1)
i =

1

aii

(
bi −

∑
j 6=i

aijx
(k)
j

)
and x

(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
i = 1 → n

which can be written in terms of a matrix iteration:

M = −D−1(L + U), c = D−1b and M = −(D + L)−1U, c = (D + L)−1b

where D, L and U are diagonal, lower triangular and upper triangular matrices associated
with A.

Example. 10 1 1
1 10 −1
−1 −1 10

x1

x2

x3

 =

12
10
8

 is solved by

x1

x2

x3

 =

1
1
1

 .

Jacobi Iteration:

10x
(k+1)
1

10x
(k+1)
2

10x
(k+1)
3

 =

12
10
8

−

 x
(k)
2 + x

(k)
3

x
(k)
1 − x

(k)
3

−x
(k)
1 − x

(k)
2


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x(0) x(1) x(2) x(3) x(4) x(5)0
0
0

 1.2
1.0
0.8

 1.02
0.96
1.02

 1.002
1.000
0.998

 1.0002
0.9996
1.0002

 1.00002
1.00000
0.99998


Gauss-Seidel Iteration:

10x
(k+1)
1

10x
(k+1)
2

10x
(k+1)
3

 =

12
10
8

−

 x
(k)
2 + x

(k)
3

x
(k+1)
1 − x

(k)
3

−x
(k+1)
1 − x

(k+1)
2


x(0) x(1) x(2) x(3) x(4)0
0
0

  1.2
0.88
1.008

  1.0112
0.99968
1.00109

  0.99992
1.00012
1.000004

  0.99999
1.000002
0.999999

 .

So when does a consistent, one-point iterative converge, i.e. when does {x(k)} converge
to x? Defining e(k) = x− x(k) it follows that

e(k+1) = Mx + c−Mx(k) − c = Me(k) =⇒ e(k) = Mke(0).

Hence picking any consistent matrix and vector norm, convergence follows iff limk→∞ e(k) =
0 iff ρ(M) < 1. A practical way to estimate the error:

‖x− x(k)‖6 ‖M‖k−1

1− ‖M‖
‖x(1) − x(0)‖.

Theorem. 3.1 If A is a strictly diagonally dominant square matrix then both the Jacobi
and Gauss-Seidel iterations converge.

Theorem. 3.2 If A is a real, symmetric, positive definite matrix (xT Ax > 0 for all
x ∈ Rn), then the Gauss-Seidel iterates converge.

Some other one-point iterative methods are the SOR method ω ∈ R

(I + ωD−1L)x(k+1) =
(
(1− ω)I − ωD−1U

)
x(k) + ωD−1b

and the AOR r, ω ∈ R

(I + rD−1L)x(k+1) =
(
(1− ω)I − (ω − r)D−1L− ωD−1U

)
x(k) + ωD−1b.

Theorem. 3.3 A necessary condition for convergence of the SOR iteration is 0 < ω < 2.

4 Convergence of Finite Difference Schemes

4.1 Basic theory

Recalling the notation from Section 1.2 we consider approximating

P (
∂

∂t
,

∂

∂x
)u = f (4.1a)
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with initial conditions
u(x, 0) = u0(x), x ∈ R. (4.1b)

By some finite difference scheme
PUn

j = fn
j (4.2a)

with initial conditions
U0

j = u0(jh). (4.2b)

If no boundary conditions are imposed then j is unbounded so j ∈ Z. For each time level
n, the solution values are a bi-infinite sequence

{
Un

j |j ∈ Z
}
. If boundary conditions are

imposed then j runs through some finite set, say j = 1, · · · J − 1, and at time level n the
solution values

{
Un

j |j = 1, · · · J − 1
}

is a vector in RJ−1. Therefore at each time level the
solution values lie in some vector space S. In which case it may be possible to reformulate
the linear finite difference scheme into the computational form

Un+1 = BUn + kfn. (4.3)

In what follows ‖ · ‖ will be a norm associated with the vector space S.

Example 4.1
Suppose we take the example, from Section 1.1, (1.1a–c) with v(t) ≡ w(t) ≡ 0. A finite
difference scheme for (1.1a) is (see (1.6))

Un+1
j = µUn

j+1 + (1− 2µ)Un
j + µUn

j−1 where j = 1, · · · J − 1 and µ =
k

h2
(4.4a)

now (1.1c) leads to
Un

0 = 0 = Un
J , n>1. (4.4b)

Hence Un+1 = BUn where

B =


1− 2µ µ 0 · · · 0

µ 1− 2µ µ
. . .

...

0
. . . . . . . . . 0

...
. . . µ 1− 2µ µ

0 · · · 0 µ 1− 2µ

 .

Now

‖BV ‖∞6 [|µ|+ |1− 2µ|+ |µ|] ‖V ‖∞ =⇒ ‖B‖∞6

{
1 µ61/2

4µ− 1 µ>1/2

4.2 Stability Theory for PDE’s

Definition 4.1
Consider solving (4.1a,b) by the method (4.2a,b) then:

12



1. The Truncation error is

T n
j = Pun

j − fn
j ; the vector T n ∈ S.

2. The method (4.2a,b) is consistent if

max
m=0,···n

‖T m‖ → 0 as k, h → 0, nk = T fixed.

3. The method (4.2a,b) is convergent if

‖Un − un‖ → 0 as k, h → 0, nk = T fixed.

4. The method (4.2a,b) is stable if

for all T > 0 there exists CT > 0 such that for all initial conditions u0, v0 then the
corresponding solutions at the n’th time level satisfy

‖Un − V n‖6CT‖U 0 − V 0‖ when nk6T.

We shall show that consistency and stability imply convergence; Lax equivalence theorem.

Remark

Notice that for stability Un and V n satisfy

Un+1 = BUn + kfn V n+1 = BV n + kfn =⇒ Un+1 − V n+1 = B(Un − V n)

=⇒ Un − V n = Bn(U 0 − V 0).

Thus, defining W n = Un − V n where W n+1 = BW n (i.e. take f ≡ 0) the stability
criterion boils down to

‖W n‖6CT‖W 0‖ or ‖Bn‖6CT .

Lemma 4.1
Suppose en, tn ∈ S satisfy

en+1 = Ben + tn n>0 (4.5)

where B is some linear transformation on S (i.e. a matrix), then

en = Bne0 +
n−1∑
m=0

Bn−1−mtm n>1. (4.6)

Proof. Clearly (4.6) holds when n = 1. We now assume (4.6) holds for some n>1 and
prove the result by induction. Now

en+1 = Ben + tn = B

(
Bne0 +

n−1∑
m=0

Bn−1−mtm

)
+ tn

= Bn+1e0 +
n−1∑
m=0

Bn−mtm + B1+n−ntn = Bn+1e0 +
n∑

m=0

Bn−mtm.

13



Theorem 4.1
Assume that B in (4.3) is a linear transformation on S and that the method (4.2a,b) is
stable. Then

‖Un − un‖6TCT max
m=0,···n−1

‖T m‖

for all n such that nk = T .

Hence if the scheme is also consistent, then it converges and its rate of convergence is
determined by how fast the quantity maxm=0,···n−1 ‖T m‖ approaches zero.

Proof. Recall (4.3)
Un+1 = BUn + kfn. (4.7)

was obtained from (4.2a)
PUn

j = fn
j

by multiplication of k and rearrangement. Also note that by the definition of the trunca-
tion error

Pun
j = fn

j + T n
j

and it follows from a similar argument

un+1 = Bun + kfn + kT n. (4.8)

Defining en = un −Un then subtract (4.7) from (4.8) we obtain

en+1 = Ben + kT n n>0 (4.9)

Then from Lemma 4.1

en = Bne0 + k
n−1∑
m=0

Bn−1−mT m.

14



However, noting that e0 = 0 by (4.2b), linearity of B, compatibility of the matrix and
vector norms and the triangle inequality it follows by taking norms that

‖en‖ = k
n−1∑
m=0

‖Bn−1−mT m‖6k
n−1∑
m=0

‖Bn−1−m‖‖T m‖ (4.10)

6 kn max
m=0,···n−1

‖Bn−1−m‖ max
m=0,···n−1

‖T m‖ (4.11)

Now noting the remark after Definition 4.1 yields the result.

Example 4.2
Returning to Example 1.1

Un+1
j = (1 + µδ2)Un

j U0
j = u0(jk), (4.12)

with no boundary conditions. There is a technique for assessing stability. Suppose the
solution of (4.12) takes the form

Un
j = gneijξ, j ∈ Z, n>0 (4.13)

for some ξ ∈ [−π, π]2. Substituting this into (4.12) yields

gn+1eijξ = (1 + µδ2)gneijξ = gn(1 + µ(eiξ − 2 + e−iξ))eijξ = (1− 4µ sin2( ξ
2
))gneijξ.

Noting that g 6= 0 we obtain that g = (1 − 4µ sin2( ξ
2
)) and Un+1

j = gUn
j . Turning to the

question of stability, take V 0 = 0 = V n, then

‖Un‖ = |1− 4µ sin2( ξ
2
)|n‖U 0‖.

Hence the scheme is unstable if and only if

|1− 4µ sin2( ξ
2
)| > 1 ⇐⇒ 1− 4µ sin2( ξ

2
) > 1 or − (1− 4µ sin2( ξ

2
)) > 1 ⇐⇒ 2 < 4µ sin2( ξ

2
)

holds for at least one ξ ∈ [−π, π] and so

2 < 4µ ⇐⇒ 1

2
< µ.

From linearity we have

‖Un − V n‖ = |1− 4µ sin2( ξ
2
)|n‖U 0 − V 0‖

and so for stability we require that for all ξ ∈ [−π, π]

|1− 4µ sin2( ξ
2
)|n6CT ⇐⇒ |1− 4µ sin2( ξ

2
)|61

⇐⇒ 1− 4µ sin2( ξ
2
)61 and 1− 4µ sin2( ξ

2
))>− 1 ⇐⇒ 2>4µ sin2( ξ

2
)

and so µ61
2
.

2We assume g 6= 0 otherwise Un
j = 0, or U0

j = 0, and this is a very special case!

15



4.3 Fourier Analysis

Let S be the space of bi-infinite sequences with norm

‖ · ‖2 =

[∑
j∈Z

h|Vj|2
]1/2

which is bounded. We define the Fourier Transform of V ∈ S by

V̂ (ξ) =
1√
2π

∑
j∈Z

hVj e−ijhξ, ξ ∈
[
−π

h
,
π

h

]
.

Lemma 4.2
If V ∈ S then we have the “inversion formula”

Vk =
1√
2π

∫ π
h

−π
h

eikhξV̂ (ξ) dξ

and “Parseval’s identity” ∫ π
h

−π
h

|V̂ (ξ)|2 dξ = ‖V ‖2
2

Proof. Assuming that we can interchange double sums, integrals and sums, etc.

1√
2π

∫ π
h

−π
h

eikhξV̂ (ξ) dξ =
1

2π

∫ π
h

−π
h

eikhξ
∑
j∈Z

hVj e−ijhξ dξ =
1

2π

∑
j∈Z

hVj

∫ π
h

−π
h

ei(k−j)hξ dξ.

If k 6= j then∫ π
h

−π
h

ei(k−j)hξ dξ =
1

i(k − j)h

[
ei(k−j)hξ

]π
h

−π
h

=
1

i(k − j)h

[
ei(k−j)π − e−i(k−j)π

]
= 0.

If j = k then ∫ π
h

−π
h

ei(k−j)hξ dξ = 2
π

h
.

Hence

1√
2π

∫ π
h

−π
h

eikhξV̂ (ξ) dξ =
1

2π
hVk × 2

π

h
= Vk.

Now to prove Parseval’s equality∫ π
h

−π
h

|V̂ (ξ)|2 dξ =
1

2π

∑
j∈Z

∑
k∈Z

h2VjVk

∫ π
h

−π
h

e−i(j−k)hξ dξ =
∑
j∈Z

h|Vj|2 dξ = ‖V ‖2
2
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Theorem 4.2
Let P be a spatial linear finite difference operator.

1. The difference scheme
Un+1

j = PUn
j (4.14)

is satisfied by the trial solution

Un
j = gn eijhξ, ξ ∈

[
−π

h
,
π

h

]
(4.15)

g 6= 0 if and only if g = g(hξ) satisfies

P̂V (ξ) = gV̂ (ξ), ξ ∈
[
−π

h
,
π

h

]
(4.16)

for all V ∈ S.

2. If (4.15) satisfies (4.14) then any finite difference scheme of the form

Un+1
j = PUn

j + kfn
j (4.17)

is stable with respect to the ‖ · ‖2 if and only if

|g|61 + Ck, ξ ∈
[
−π

h
,
π

h

]
(4.18)

as k → 0 for some fixed constant C.

Proof. Since P is a linear spatial finite difference operator,

PVj =

q∑
k=−p

akVj+k

for some coefficients ak. Noting that for k fixed

{̂Vj+k}(ξ) =
1√
2π

∑
j∈Z

hVj+k e−ijhξ =
1√
2π

∑
j∈Z

hVj e−i(j−k)hξ = eikhξV̂ (ξ)

it follows since the Fourier transform and P are linear that

P̂V (ξ) =

̂{
q∑

k=−p

akVj+k

}
(ξ) =

q∑
k=−p

ak eikhξV̂ (ξ).

Now (4.15) satisfies (4.14), hence

gn+1 eijhξ = PUn
j =

q∑
k=−p

akU
n
j+k =

q∑
k=−p

akg
n ei(j+k)hξ

=

[
q∑

k=−p

ak eikhξ

]
gn eijhξ ⇐⇒ g =

[
q∑

k=−p

ak eikhξ

]
.
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For the second part, we only prove the result in one direction. Suppose g 6= 0 satisfies
(4.18). Let Un and V n be two solutions coming from initial conditions U 0 and V 0 and
set W n = Un − V n, then from linearity W n+1

j = PW n
j . Hence applying the Fourier

transform

Ŵ n+1(ξ) = gŴ n(ξ).

so by the previous Lemma,

‖W n+1‖2
2 =

∫ π
h

−π
h

|Ŵ n+1(ξ)|2 dξ =

∫ π
h

−π
h

|g|2|Ŵ n(ξ)|2 dξ

6 (1 + Ck)2

∫ π
h

−π
h

|Ŵ n(ξ)|2 dξ = (1 + Ck)2‖W n‖2
2

hence taking square-roots and using induction

‖W n‖26(1 + Ck)n‖W 0‖26 eCkn‖W 0‖26 eCT‖W 0‖2

when kn6T so the method is stable with respect to the ‖ · ‖2 norm.

Example 4.3
In Example 2.2 we found

g = 1− 4µ sin2 ξ
2
.

For µ fixed, g is independent of k and so stability is equivalent to

|g|61,∀ h ∈ [−π, π] ⇐⇒ µ6
1

2
.

Notice that this has the important implication that for stability k61
2
h2. Also if the

amplification factor, g, is independent of k then the previous theorem says that the
scheme is stable if and only if |g|61. In Example 1.3, the oscillation were caused by
instability.

Example 4.4
In Example 1.3 we showed that the finite difference scheme

Un+1
j = (1 + λ)Un

j − λUn
j+1 where λ =

k

h

approximating ut + ux = 0 was consistent. Is it stable? Setting Un
j = gn eijξ yields that

g = 1 + λ− λ eiξ = 1 + λ− λ cos ξ − iλ sin ξ

and hence

|g|2 = (1 + λ− λ cos ξ)2 + λ2 sin2 ξ = (1 + λ)2 − 2λ(1 + λ) cos ξ + λ2

= 1 + 2λ(1 + λ)(1− cos ξ) = 1 + 4λ(1 + λ) sin2 ξ
2

> 1

and so for λ fixed the method is unstable for all λ > 0 which was expected due to the
instability of the finite difference scheme.
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Notice that the same methodology for proving stability can be applied to more general
difference schemes.

In Section 1.1 we considered an explicit finite difference method to solve the heat
equation. We now consider the θ-method which for θ > 0 is implicit. Let θ ∈ [0, 1] and
consider the finite difference method

1

k
(Un+1

j − Un
j ) =

1

h2

[
θδ2Un+1

j + (1− θ)δ2Un
j

]
, U0

j = u0(jh). (4.19)

With θ = 1, 1
2
, 0 this is called the backwards/implicit Euler method, Crank-Nicholson

method and forward/explicit Euler method.

In computational form one writes

(1− µθδ2)Un+1
j = (1 + µ(1− θ)δ2)Un

j . (4.20)

We shall see that when θ>1
2

the method is stable.

As before substitute Un
j = gneijξ in (4.20) then

(1 + 4µθ sin2( ξ
2
))gn+1 = (1− 4µ(1− θ) sin2( ξ

2
))gn.

As we saw previously for stability we require that

−16
1− 4µ(1− θ) sin2( ξ

2
)

1 + 4µθ sin2( ξ
2
)

61

⇐⇒ −(1 + 4µθ sin2( ξ
2
))61− 4µ(1− θ) sin2( ξ

2
)61 + 4µθ sin2( ξ

2
)

⇐⇒ 4µθ sin2( ξ
2
)(1− 2θ)62 and − 4µθ sin2( ξ

2
)60.

Since µ is fixed the second inequality is always true. If θ>1
2

then the first inequality is
always true. If however θ < 1

2
then the method is stable if and only if µ6 1

2(1−2θ)
.

For the rest of this section we focus on the model hyperbolic problem ut + aux = 0.

We saw in Example 2.4 the problem described in Example 1.3 was unstable. To design
a better scheme we note that on a x− t grid information propagates along characteristics
with positive gradient. This suggests the scheme

Un+1
j = Un

j − aλ(Un
j − Un

j−1). (4.5)

If a < 0 we should use the scheme

Un+1
j = Un

j − aλ(Un
j+1 − Un

j ). (4.6)

The Upwind scheme

For general a we can roll the previous two schemes together

Un+1
j = Un

j − λ max{a, 0}(Un
j − Un

j−1)− λ min{a, 0}(Un
j+1 − Un

j ). (4.7)
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This scheme is consistent with T n
j = O(k) + O(h). To check stability put Un

j = gneijξ

then we find

|g|2 =

{
1 + 4aλ(1 + aλ) sin2 ξ

2
if a < 0

1− 4aλ(1− aλ) sin2 ξ
2

if a > 0

and stability follows if |a|λ61. This is called the CFL condition (Courant, Friedrichs &
Levy).

Dissipation

Preserving the quantitative feature of the solution to a PDE is desirable. If we suppose
that the solution to ut + aux = 0 satisfies u(x, t) → 0 as |x| → ∞ for each fixed t then

1

2

d

dt

∫ ∞

−∞
u2 dx = lim

L→∞

1

2

d

dt

∫ L

−L

u2(x, t) dx = lim
L→∞

∫ L

−L

utu dx = −a lim
L→∞

∫ L

−L

uxu dx

= −a
1

2
lim

L→∞

[
u2(x, t)

]x=L

x=−L
= 0 =⇒

∫ ∞

−∞
u2(x, t) dx =

∫ ∞

−∞

[
u0(x)

]2
dx

we have we call this non-dissipation. We wish our numerical scheme to inherit this
property. Recalling Theorem 2.2, if |g| = 1 then ‖Un+1‖ = ‖Un‖ and the scheme is
called non-dissipative. If g < 1 the scheme is called dissipative. Hence for the scheme
just discussed we have non-dissipation if |a|λ = 1.

We would like a = a(x) hence it is unlikely that non-dissipation can be achieved. Thus
in general the upwind scheme may be considered to be dissipative (just choose λ small
enough). Since the upwind scheme is dissipative and has truncation error O(h) + O(k)
we consider other schemes.

The Lax-Wendroff scheme

Assume a is constant and starting with the Taylor series

u(jh, (n + 1)k) ≈ u(jh, nk) + kut(jh, nk) +
k2

2!
utt(jh, nk).

Now noting that

ut(jh, nk) = −aux(jh, nk) ≈ −a
un

j+1 − un
j−1

2h

and

utt(jh, nk) = (−aux(jh, nk))t = a2uxx(jh, nk) ≈ a2
δ2un

j

h2
= a2

un
j+1 − 2un

j + un
j−1

h2
.

our approximation becomes

Un+1
j = Un

j −
aλ

2
(Un

j+1 − Un
j−1) +

a2λ2

2!
δ2Un

j .
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It is easy to adapt this to variable a — see the problem sheet. We now consider the
stability of this scheme. Assume that Un

j = gneijξ then

g = 1− aλ

2
(eiξ − e−iξ) +

a2λ2

2!
(eiξ − 2 + e−iξ)

= 1− aλi sin ξ − 2a2λ2 sin2(
ξ

2
)

Hence

|g|2 = (1− 2a2λ2 sin2(
ξ

2
))2 + a2λ2 sin2 ξ

= (1− 2a2λ2 sin2(
ξ

2
))2 + 4a2λ2 sin2 ξ

2
(1− sin2 ξ

2
)

= 1− 4(1− a2λ2)a2λ2 sin4(
ξ

2
))

which is stable when |aλ|61. It has truncation error O(k2) + O(h2), higher than for the
upwind scheme. The dissipation in the Lax-Wendroff scheme is 4(1 − a2λ2)a2λ2 sin4( ξ

2
))

which is smaller than the dissipation for the upwind scheme 4aλ(1− aλ) sin2 ξ
2
.

Artificial Diffusion

Un+1
j − Un

j +
aλ

2
(Un

j+1 − Un
j−1)︸ ︷︷ ︸

A

− a2λ2

2
δ2Un

j︸ ︷︷ ︸
B

= 0. (4.8)

A is unstable and B stabilizes the problem, c.f. Problem 3a.

Finite Volume

We first revisit some key points from vector calculus before introducing the Finite
Element Method for two space dimensions.

Definition 4.2
If V : R2 → R and F : R2 → R2 then

∇V =

(
∂V

∂x1

,
∂V

∂x2

)
and ∇ · F =

(
∂F1

∂x1

,
∂F2

∂x2

)
(4.9)

are called the gradient and divergence respectively.

Theorem 4.3 (Divergence)
If F : Ω → R2 is a sufficiently differentiable vector valued function then∫

Ω

(∇ · F )(x) dA =

∫
Γ

F (x) · n(x)ds (4.10)

where n is the unit normal pointing out of Ω.
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A physical interpretation of the Divergence Theorem is if F is the velocity of a fluid then
the left-hand integral is the amount of fluid lost from Ω, while the right-hand integral is
the amount of fluid which has crossed Γ, i.e. this is a conservation law.

The Divergence Theorem in two-dimensions:∫∫
D

(∇ · F ) dA =

∫
∂D

F · n ds

is Green’s theorem, so they say! Let the parameterisation be given by r = (x(s), y(s))T

where s is the arc-length (|r′| = 1), then the unit tangent vector is (x′, y′) and so the
unit outward pointing normal is (y′,−x′)ds = (dy,−dx) and hence from the Divergence
theorem∫∫

D

(
∂g

∂x
+

∂f

∂y

)
dσ =

∫∫
D

(
∂

∂x
,

∂

∂y

)
· (g, f)dσ =

∫
∂D

(g, f) · (dy,−dx)

=

∫
∂D

(−f dx + g dy)

where ∂D is the boundary of D described anti-clockwise, this is Green’s theorem

We lay a grid on the solution region and then look at each grid cell and ask that
the differential equation holds in some average sense over the cell. For example, let be
a constant on an individual cell Ωj,n = (xj, xj+1) × (tn, tn+1) then using the divergence
theorem

-
n = (1, 0)T

�
n = (−1, 0)T

6

n = (0, 1)T

?

n = (0,−1)T

6

-

Ωj,n

x

t

0 =

∫
Ωj,n

∂u

∂t
+ a

∂u

∂x
dxdt =

∫
Ωj,n

(
∂

∂x
,

∂

∂t
).(au, u)dxdt =

∫
∂Ωj,n

(au, u).nds

= −a

∫ tn

tn+1

u(xj, t) [−dt]−
∫ xj+1

xj

u(x, tn)dx

+a

∫ tn+1

tn

u(xj+1, t)dt +

∫ xj

xj+1

u(x, tn+1) [−dx] .
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We then approximate each of these integrals using the midpoint rule

0 ≈ −ak

2
[u(xj, tn) + u(xj, tn+1)]−

h

2
[u(xj, tn) + u(xj+1, tn)]

+
ak

2
[u(xj+1, tn) + u(xj+1, tn+1)] +

h

2
[u(xj, tn+1) + u(xj+1, tn+1)]

which setting Un
j = u(xj, tn), replacing the ≈ by =, multiplying by 2/h leads to the

cell-vertex method

0 = −(aλ + 1)Un
j + (−1 + aλ)Un

j+1 + (1− aλ)Un+1
j + (1 + aλ)Un+1

j+1 . (4.11)

Leap-frog scheme

Un+1
j = Un−1

j − λ
(
aj+1U

n
j+1 − aj−1U

n
j−1

)
(4.12)

is consistent and is stable (when the CFL condition and a is constant).

Fourier Analysis gives rigorous stability criteria in the absence of boundary conditions,
only in special cases will it be rigorous when boundary conditions are present. Even so,
it is commonly used with any old boundary conditions. We have focused on stability in
the ‖ · ‖2 of course there are other norms on S however in general these don’t have nice
properties.

5 Boundary conditions

Consider the heat equation, the convection-diffusion equation or the reaction diffusion
equation

ut = uxx, ut = uxx + aux, ut = uxx + f(u) (5.1)

where f(u) is some function of u, i.e. eu, u3 − u, etc. Each of these equations is to be
supplemented by an initial condition and a boundary condition.

Now we consider adding some non-zero boundary conditions and the practicalities.

Example 5.1
Consider replacing u(0, t) = 1 in Example ?? by the zero Neumann boundary condition

ux(0, t) = 0, t > 0. (5.2)

in (??). To handle this case we introduce the dummy variable, Un
−1, at each time level.

So that in the finite difference discretisation we replace Un
0 = 1 by

Un
1 − Un

−1

2h
= 0 =⇒ U−1 = Un

1 . (5.3)
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The matrix formulation is exactly the same except for the first line. Set {Un}j = Un
j

j = 0, · · · J − 1 then
1 + 2µ −2µ 0 · · · 0

−µ 1 + 2µ −µ
. . .

...

0
. . . . . . . . . 0

...
. . . −µ 1 + 2µ −µ

0 · · · 0 −µ 1 + 2µ

Un+1 = Un +


0
0
...
0

µ× 0

 .

5.1 The maximum principle

The previous two examples are consistent and stable. A Fourier analysis ignores the
boundary conditions. However, we have a direct proof of stability based on the maximum
principle. We review the maximum principle for the previous example.

Let C = max{0, maxx∈[0,1] u
0(x)}. Multiply by max{u(x, t) − C, 0} then on noting

that ∫ 1

0

ut max{u(x, t)− C, 0} dx =

∫
x∈[0,1]:u(x,t)<C

(u− C)t(u(x, t)− C) dx

=

∫
x∈[0,1]:u(x,t)<C

1

2

d

dt
(u− C)2 dx =

1

2

d

dt

∫ 1

0

[max{u(x, t)− C, 0}]2 dx

Also ∫ 1

0

uxx max{u(x, t)− C, 0} dx

= [ux max{u(x, t)− C, 0}]10 −
∫ 1

0

[max{u(x, t)− C, 0}]2x dx

= −
∫ 1

0

[max{u(x, t)− C, 0}]2x dx

Hence,

1

2

d

dt

∫ 1

0

[max{u(x, t)− C, 0}]2 dx +

∫ 1

0

[max{u(x, t)− C, 0}]2x dx = 0

so that integrating over (0, t) and noting that u(x, 0)6C it follows that

06
1

2

∫ 1

0

[max{u(x, t)− C, 0}]2 dx

6
1

2

∫ 1

0

[max{u(x, t)− C, 0}]2 dx− 1

2

∫ 1

0

[max{u(x, 0)− C, 0}]2 dx

+

∫ t

0

∫ 1

0

[max{u(x, s)− C, 0}]2x dx ds = 0
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and so we conclude that

[max{u(x, t)− C, 0}]2 ≡ 0 ⇐⇒ u(x, t)6C.

Similarly (multiplying by −1), it is possible to show that

−u(x, t)6 max{0, max
x∈[0,1]

−u0(x)} ⇐⇒ u(x, t)> min{0, min
x∈[0,1]

u0(x)}

Hence, u(x, t) is bounded above and below by the extremes attained by the initial data
and boundary values.

Let us revisit Example 3.2. The j’th equation is

(1 + 2µ)Un+1
j =

{
Un

0 + 2µUn+1
1 if j = 0

µUn+1
j−1 + Un

j + µUn+1
j+1 if j = 1, · · · J − 1

.

Let |Un+1
j | = ‖Un+1‖∞ and for simplicity assume that 16j6J − 1. Then since 1 + 2µ > 0

(1 + 2µ)‖Un+1‖∞ = |(1 + 2µ)Un+1
j | = |µUn+1

j−1 + Un
j + µUn+1

j+1 |
6 µ‖Un+1‖∞ + ‖Un‖∞ + µ‖Un+1‖∞

or
‖Un+1‖∞6‖Un‖∞6‖U 0‖∞

for all n>0 and we have stability with respect to the ‖ · ‖∞ norm. Alternatively, tak-
ing Un+1

j? = maxj=0,···J−1 Un+1
j you can show that maxj Un+1

j 6 maxj Un
j and similarly

minj Un+1
j > minj Un

j . To show that the scheme is convergent, we also have to show
it is consistent. The truncation error is

T n
j =

un+1
j − un

j

k
−

{
(2un+1

1 − 2un+1
0 )/h2 if j = 0

(un+1
j+1 − 2un+1

j + un+1
j−1 )/h2 if j = 1, · · · J − 1

.

It is straightforward to show that (See the problem sheet)

T n
j = O(k) + O(h2) j = 1, · · · J − 1

We now turn to the case where j = 0. Noting that ux(0, t) = 0

uxt(0, kn) = lim
k′→0

ux(0, kn + k′)− ux(0, kn)

k′
= 0,

similarly for all higher order derivatives in t

uxxx = uxt =
ux(0, k(n + 1))− ux(0, kn)

k
+ O(k) = O(k)

and

un+1
1 − un+1

0

= hux +
1

2
(h2uxx + 2hkuxt) +

1

3
(h3uxxx + 3h2kuxxt + 3hk2uxtt) + O(h4) + O(k4)

=
1

2
h2uxx +

1

3
(h3uxxx + 3h2kuxxt) + O(h4) + O(k4),
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so that

T n
j =

un+1
0 − un

0

k
− 2

un+1
1 − un+1

0

h2
= ut + O(k)− uxx + O(h2) + O(k) = O(k) + O(h2)

Suppose we want to solve ut + aux = 0 on (0, 1) where a > 0 is constant with
u(x, 0) = u0(x) and boundary condition

u(0, t) = v(t), t > 0 (5.4)

We will use a maximum principle argument to show that the upwind scheme is convergent
in the presence of boundary conditions if the CFL condition (aλ61) holds.

The upwind scheme with appropriate boundary condition is for j = 1, · · · J

Un+1
j = Un

j − aλ(Un
j − Un

j−1) with U0
j = u0(jh) and Un

0 = v(nk).

Rewriting the difference scheme for j = 1, · · · , J , taking the modulus and using the CFL
condition aλ61

|Un+1
j | = |(1− aλ)Un

j + aλUn
j−1|6(1− aλ)|Un

j |+ aλ|Un
j−1|

6 (1− aλ) max
j=0,···J

|Un
j |+ aλ max

j=0,···J
|Un

j | = max
j=0,···J

|Un
j |.

Hence, taking the maximum over j = 1, · · · , J and noting that |Un+1
0 | = |v((n + 1)k)| we

conclude that
max

j=0,···J
|Un+1

j |6 max{ max
j=0,···J

|Un
j |, |v((n + 1)k)|}

=⇒ max
j=0,···J

|Un
j |6 max{ max

j=0,···J
|U0

j |, max
n=0,···N

|v(nk)|}

that is L∞-stable and hence we conclude convergence.

6 Finite Element Methods

6.1 Introduction

So far we have only considered PDE’s in one space dimension. Physical bodies are not
one dimensional, and usually we want to solve one or two dimensional problems.

The two dimensional analogue of the Heat equation is

∂u

∂t
−∇ · (c∇u) = f. (6.1)

here, the conductivity c = c(x) is taken to be a scalar function. The equation (6.1) may
be solved for u(x, t) for t > 0 and x ∈ Ω (Ω some bounded domain of R2 subject to initial
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conditions u(x, 0) = u0(x) and boundary conditions on Γ = ∂Ω, the boundary of Ω). We
will also consider the steady state of u, i.e. where ∂u

∂t
= 0, then

−∇ · (c∇u) = f on Ω. (6.2)

Suppose we scale c so that c ≡ 1, then we get

−∆u ≡ −∇2u = −∇ · (∇u) = f on Ω or − ∂2u

∂x2
− ∂2u

∂y2
= f. (6.3)

This is called Poisson’s equations . We accompany (6.2) by boundary conditions, for
example

Dirichlet u(x) = g(x), x ∈ ΓD (6.4)

Neumann
∂u

∂n
(x) = g̃(x), x ∈ ΓN (6.5)

where Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, g, and g̃ are given and ∂u
∂n

is the normal derivative of
u on Γ, that is

∂u

∂n
= ∇u(x) · n(x) (6.6)

where n(x) is the unit normal pointing outwards from Ω.

How do we approximate (6.2)?

If we start on a simple domain, i.e. Ω = [0, 1] × [0, 1] with a uniform grid h in both
directions, set xj = jh, write uj,k = u(xj, xk) then we can approximate −∇2u = f by a
finite difference scheme

−
{

Uj+1,k − 2Uj,k + Uj−1,k

h2

}
−
{

Uj,k+1 − 2Uj,k + Uj,k−1

h2

}
= fj,k. (6.7a)

If we have Dirichlet boundary condition (6.4), then

Uj,k = gj,k when (xj, xk) ∈ Γ (6.7b)

and (6.7a) consists of a (J − 1)2 × (J − 1)2 system of equations for the unknowns Uj,k.

Example 6.1
Set h = 1/3. At the point labelled 1

∂2u
∂x2 + ∂2u

∂y2 = 0

u = 1

u = 1u = 1

u = 1

1 2

3 4
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the following difference equation holds

u2 − 2u1 + 1

(1/3)2
+

1− 2u1 + u3

(1/3)2
= 0.

After some algebra the following equations hold:

u2 − 4u1 + u3 + 2 = 0
u1 − 4u2 + u4 + 2 = 0
u1 − 4u3 + u4 + 2 = 0
u2 − 4u4 + u3 + 2 = 0

⇐⇒


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4




u1

u2

u3

u4

 =


2
2
2
2

 i.e. Au = 2

A is diagonally dominant and therefore invertible. The solution is given by

u1 = u2 = u3 = u4 = 1.

Using the method of separation of variables, it is easy to see that the exact solution is
given by u(x, y) = 1.

Example 6.2
Suppose we wish to approximate the problem

∂u/∂n = x(1− x)

u = 1u = 1

u = 1

−∇2u = 0

1 2 3

4 5 6

987

10 11 12

At internal points we use the five point difference operator, e.g. the point 8 gives us the
difference equation:

u9 − 2u8 − u7

h2
+

u5 − 2u8 + u11

h2
= 0.

To apply the boundary condition we introduce an imaginary point

I

31

5

2
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then whatever the value of u at I is, we approximate it by the following equation:

1

h2
(uI + u1 + u3 + u5 − 4u2) = 0

but also

x(1− x) =
∂u

∂n
≈ uI − u5

2h
,

so taking uI = u5 yields

1

h2
(2u5 + u1 + u3 + 2hx(1− x)− 4u2) = 0.

We can repeat this for the points 1 and 3 to give us a matrix which is diagonally dominant
and therefore invertible.

Notice that if we do not have a square, or some simple geometric shape for Ω we have to
do considerable tinkering to adapt the finite difference method.

6.2 Piecewise Linear Finite Elements on non-uniform Intervals

Consider
−u′′ = f, on (0, 1), u′(0) = u(1) = 0.

Multiply this equation by some

v ∈ V =

{
v :

∫ 1

0

(v(x))2 dx +

∫ 1

0

(v′(x))2 dx6C, v(1) = 0

}
then using integration by parts∫ 1

0

f × v dx =

∫ 1

0

[−u′′]v dx = [−u′v]10 dx +

∫ 1

0

u′v′ dx =

∫ 1

0

u′v′ dx.

This leads to the weak formulation: Find u ∈ V such that

a(u, v) =

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx = L(v), ∀v ∈ V.

Note that this has the important advantage that only first derivatives are required.

Divide (0, 1) into a mesh of J non-overlapping intervals, τ = (xi, xi+1), and call this
the triangulation, T h, of (0, 1). The vertices x0, · · ·xJ are called the nodes . For any
interval τ ∈ T h define the local mesh parameter

hτ = max{|x− y| : x, y,∈ τ} = xi+1 − xi

and define h = maxτ hτ . h is a measure of the “fineness” of the triangulation. A function
vh : (0, 1) → R is called piecewise linear on (0, 1) if

vh(x) = a + bx for x ∈ τ.
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From this we define the space V h

V h =
{
vh : [0, 1] → R, vh is continuous on (0, 1), vh is piecewise linear, vh(1) = 0

}
.

(6.8)
Since the hat functions

φj(x) =


(x− xj−1)/(xj − xj−1) if ∈ (xj−1, xj)

(xj+1 − x)/(xj+1 − xj) if ∈ (xj, xj+1)

0 otherwise

∈ V h

form a basis for the piecewise linear function, where φj(xi) = δij, any function vh ∈ V h

may be written uniquely as

vh(x) =
J−1∑
i=0

Viφi(x).

Note that vh(xj) = Vj. The Piecewise Linear Finite Element Method is: Find uh ∈ V h

such that
a(uh, vh) = L(vh) ∀ vh ∈ V h. (6.9)

Noting that uh =
∑J−1

j=0 Ujφj and taking vh = φi i = 0, · · · J − 1

J−1∑
j=0

a(φi, φj)Uj = L(φi), i = 0, · · · J − 1

where we note the linearity of a(·, ·) in both variables. This is a J × J linear system

AU = f (6.10)

where Aij = a(φi, φj) and fi = L(φi).

Notice that to implement (6.10) requires us to calculate the stiffness matrix for (6.9)

Aij =

∫ 1

0

d

dx
φi(x)

d

dx
φj(x) dx

and this will vanish unless the regions on which φi and φj are non-zero overlap (i.e. xi

and xj share an interval). Since (0, 1) is the union of the intervals, τ , in T h, we can write

Aij =
∑
τ∈T h

Aτ
ij where Aτ

ij =

∫
τ

d

dx
φτ

i (x)
d

dx
φτ

j (x) dx, (6.11)

and φτ
i denotes the restriction of φi to τ . Let the nodes of the interval τ be labelled xi

and xi+1, ordered from left to right, then observe that

φτ
i (x) =

1

|τ |

∣∣∣∣1 x
1 xi+1

∣∣∣∣
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is linear and satisfies φτ
i (xj) = δij. That is φτ

i is the restriction of the global basis function
centred at xi to τ . Also

φτ
i+1(x) =

1

|τ |

∣∣∣∣1 xi

1 x

∣∣∣∣ .
Since

d

dx
φτ

i (x) = − 1

|τ |
and

d

dx
φτ

i+1(x) =
1

|τ |
and each of these is constant

Aτ
ij =

∫
τ

d

dx
φτ

i (x)
d

dx
φτ

j (x) dx

These are stored in the element matrix(
Aτ

i,i Aτ
i,i+1

Aτ
i+1,i Aτ

i,i+1

)
=

(
1
|τ | − 1

|τ |
− 1

|τ |
1
|τ | .

)
Note that all other elements of Aτ , the element stiffness matrix , are zero and Aτ is
symmetric. Now we can assemble the matrix A where

Aij =
∑
τ∈T h

Aτ
ij

Example 6.3
If we have four intervals and we label the points sequentially 0, 1, 2, 3, 4 then

A =


1
h1

− 1
h1

0 0

− 1
h1

1
h1

+ 1
h2

− 1
h2

0

0 − 1
h2

1
h2

+ 1
h3

− 1
h3

0 0 − 1
h3

1
h3

+ 1
h4


If we label the points sequentially 5, 1, 4, 2, 3 then

A =


1
h1

+ 1
h2

0 − 1
h2

− 1
h1

0 1
h3

+ 1
h4

− 1
h3

0

− 1
h2

− 1
h3

1
h2

+ 1
h3

0

− 1
h1

0 0 1
h1


Reviewing how we calculate Aτ

ij, it will be advantageous to perform a change of variable
in two dimensions, so lets do it in one dimension. Let us transform the interval [xi, xi+1]
on to the reference interval τ̂ ≡ [0, 1]. The appropriate transformation is

x = xi(1− ξ) + xi+1ξ x ∈ [xi, xi+1], ξ ∈ [0, 1]

Then defining φ̂i(ξ) = φτ
i (x), noting d

dx
= d

dξ
dξ
dx

and dξ
dx

= 1
hi

we find that when τ =

[xi, xi+1]

Aτ
ij =

∫
τ

d

dx
φτ

i (x)
d

dx
φτ

j (x) dx =
1

hi

∫ 1

0

d

dξ
φ̂i(ξ)

d

dξ
φ̂j(x)dξ.

31



Notice that

φ̂i = 1− ξ, φ̂i+1 = ξ =⇒ d

dξ
φ̂i = −1,

d

dξ
φ̂i+1 = 1

then ∫ 1

0

d

dξ
φ̂i(ξ)

d

dξ
φ̂i(x)dξ = 1,

∫ 1

0

d

dξ
φ̂i(ξ)

d

dξ
φ̂1+1(x)dξ = −1,∫ 1

0

d

dξ
φ̂i+1(ξ)

d

dξ
φ̂i(x)dξ = −1,

∫ 1

0

d

dξ
φ̂i+1(ξ)

d

dξ
φ̂i+1(x)dξ = 1,

and hence (
Aτ

i,i Aτ
i,i+1

Aτ
i+1,i Aτ

i,i+1

)
=

1

hi

(
1 −1
−1 1.

)
=

(
1
|τ | − 1

|τ |
− 1

|τ |
1
|τ | .

)
as before.

To compute fi = L(φi) =
∫ 1

0
f(x)φi dx for any i we may wish to use numerical

integration (for example the trapezium rule).

6.3 Piecewise Linear Finite Elements on Triangles

Suppose that u, v : R2 → R and c are sufficiently differentiable functions then by setting
F = vc∇u on noting that

∇ · (vc∇u) = ∂i(vc∂iu) = c∂iv∂iu + v∂i(c∂iu) = c∇v · ∇u + v∇ · (c∇u)

we find from the Divergence Theorem∫∫
Ω

[c∇v · ∇u + v∇ · (c∇u)] dA =

∫
Γ

vc
∂u

∂n
ds (6.12)

which is just Green’s Theorem and this is our starting point.

Example 6.4
Set c ≡ 1 in (6.2) with Ω = (0, 1)× (0, 1), g(x) ≡ 0 on ΓD = {0} × (0, 1) ∪ (0, 1)× {0} ∪
{1} × (0, 1) in (6.4) and g̃(x) ≡ x(1− x) on ΓN = (0, 1)× {1} in (6.5), i.e.

−∇2u = 2y in Ω, u = 0 on ΓD,
∂u

∂n
= x(1− x)on ΓN

(Exact solution: u(x, y) = xy(1− x)) then multiply by

v ∈ H1
E(Ω) =

v :

∫∫
Ω

(v(x))2 dA +

∫∫
Ω

|∇v(x)|2 dA6C, v = 0 on ΓD

 ,
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integrate over Ω and use (6.12)∫∫
Ω

fv dA = −
∫∫
Ω

v∇ · (∇u) dA = −
∫

Γ

v
∂u

∂n
(x) ds +

∫∫
Ω

∇v · ∇u dA (6.13)

then we obtain

a(u, v) = L(v) where (6.14a)

a(u, v) =

∫∫
Ω

∇v · ∇u dx, and L(v) =

∫∫
Ω

2yv dA +

∫ 1

0

x(1− x)v(x, 1) dx.(6.14b)

This is called the weak formulation of the problem.

Note that (6.14a,b) has the important advantage over (6.13) that only first derivatives
are required.

Here we restrict ourselves to the case when Ω is a polygon. Divide Ω into a mesh
of non-overlapping triangles, τ , and call this the triangulation, T h, of Ω. The vertices
are called the nodes . We assume that no node is an interior point of any edge. For any
triangle τ ∈ T h define the local mesh parameter

hτ = max{|x1 − x2| : x1, x2,∈ τ} where | · | is the Euclidean length

(hτ is the longest side of τ) and define h = maxτ∈T h hτ . h is a measure of the “fineness”
of the triangulation. A function V : Ω → R is called piecewise linear on T h if

V (x, y) = a + bx + cy for (x, y) ∈ τ.

From this we define the space V h

V h =
{
vh : Ω → R, vh is continuous on Ω, vh is piecewise linear, vh = 0 on Γ

}
. (6.15)

Note that if you know vh ∈ V h at the nodes on the mesh, then you know vh everywhere
on Ω.

Suppose we label the nodes of the triangulation x1 → xJ . Then for any node xi the
hat functions φj ∈ V h satisfy

φj(xi) = δij =

{
1 if i = j

0 if i 6= j
.

Note that span{φi : i = 1, · · · J} form a basis for V h, hence any function vh ∈ V h may be
written uniquely as

vh(x, y) =
J∑

i=1

Viφi(x, y) where v(xj) = Vj.

Now we use V h to approximate V in the weak form of our PDE.
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Example 6.5
The Piecewise Linear Finite Element Method for Example 6.4 is: Find uh ∈ V h such that

a(uh, vh) = L(vh) ∀ vh ∈ V h. (6.16)

We proceed similarly to the previous subsection. Labelling all of the of the nodes of the
mesh on interior and on ΓN by x1, · · ·xJ , setting vh = φi, noting uh =

∑J
j=1 Ujφj and

the symmetry and linearity of a we have (6.16) is equivalent to

J∑
j=1

a(φi, φj)Uj = L(φi), i = 1, · · · J.

This is a J × J linear system
AU = f (6.17)

where Aij = a(φi, φj) and fi = L(φi). Notice that to implement (6.17) requires us to
calculate the stiffness matrix for (6.16)

Aij =

∫∫
Ω

∇φi(x) · ∇φj(x) dA

and this will vanish unless the regions on which φi and φj are non-zero overlap (i.e. xi

and xj either share an edge or are coincident). Since Ω is the union of the triangles in
T h, we can write

Aij =
∑
τ∈T h

∫∫
τ

∇φτ
i (x) · ∇φτ

j (x) dA (6.18)

where φτ
i denotes the restriction of φi to τ . If we define the element stiffness matrix for

(6.16)

Aτ
ij =

∫∫
τ

∇φτ
i (x) · ∇φτ

j (x) dA

then this is zero except for a 3 × 3 sub-matrix corresponding to the nodes of τ . As we
shall see, in practice a 3 × 3 version of Aτ

ij is assembled for each τ separately and then
one assembles, A by

Aij =
∑
τ∈T h

Aτ
ij

Formulae for φτ
i and Aτ

ij

Let the nodes of the triangle τ be labelled xi, xj and xk, ordered anti-clockwise, then
observe that

φτ
i (x, y) =

1

2|τ |

∣∣∣∣∣∣
1 x y
1 xj yj

1 xk yk

∣∣∣∣∣∣
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is linear and satisfies φτ
i (xj) = δij. That is φτ

i is the restriction of the global basis function
centred at xi to τ . Since

∇φτ
i (x) =

1

2|τ |

−
∣∣∣∣1 yj

1 yk

∣∣∣∣∣∣∣∣1 xj

1 xk

∣∣∣∣
 =

1

2|τ |

(
yj − yk

−(xj − xk)

)
=

1

2|τ |

(
di2

−di1

)

and each of these are constant

Aτ
ij =

∫∫
τ

∇φτ
i (x) · ∇φτ

j (x) dA =
|τ |

4|τ |2
(di1dj1 + di2dj2)

Note that Aτ is symmetric. Also we could have made an affine transformation xi, xj, xk

maps to the triangle, τ̂ , with vertices, (0, 0), (1, 0), (0, 1)

x 7→ ξ = B(x− xi)

where

B(xj − xi) =

(
1
0

)
and B(xk − xi) =

(
0
1

)
or put alternatively

B
(
xj − xi xk − xi

)
=

(
1 0
0 1

)
Notice that using elementary row operations

2|τ | =

∣∣∣∣∣∣
1 xi yi

1 xj yj

1 xk yk

∣∣∣∣∣∣ =
∣∣xj − xi xk − xi

∣∣
is non-zero and therefore B is uniquely defined, see the problem sheet. Then defining
φ̂i(ξ) = φτ

i (x) = φτ
i (B

−1ξ + xi) we find that

Aτ
lm =

∫∫
τ

∇φτ
l (x) · ∇φτ

m(x)dx =

∫∫
τ̂

[B∇ξφ̂l(ξ)] · [B∇ξφ̂m(x)]|B−1|dξ.

Note the Jacobian of the transformation is |B−1| = 2|τ |.

Example 6.6
We discretize Ω = (0, 1)2 as follows

@
@

@
@

@
@

@@

@
@

@
@

@
@

@@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

τ1
τ2 τ3 τ4

τ5

τ6

τ7

τ8

1 2 3

4

567

8 9
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with h = 1
2

and |B−1| = 2|τ | = h2. Notice that on the reference triangle

φ̂1 = 1− ξ1 − ξ2, φ̂2 = ξ1, φ̂3 = ξ2

=⇒ ∇ξφ̂1 =

(
−1
−1

)
, ∇ξφ̂2 =

(
1
0

)
, ∇ξφ̂3 =

(
0
1

)
.

Noting that

B =

(
1
h

0
0 1

h

)
or B =

(
− 1

h
0

0 − 1
h

)
it follows that

Aτ
ij =

∫∫
τ̂

[B∇ξφ̂i(ξ)] · [B∇ξφ̂j(x)]|B−1|dξ. =

∫∫
τ̂

∇ξφ̂i(ξ) · ∇ξφ̂j(x)dξ

and ∫∫
τ̂

∇ξφ̂1(ξ) · ∇ξφ̂1(x)dξ =

∫ 1

0

dξ2

∫ ξ2

0

2 dξ1 = 1

∫∫
τ̂

∇ξφ̂1(ξ) · ∇ξφ̂2(x)dξ =

∫ 1

0

dξ2

∫ ξ2

0

−1 dξ1 = −1

2∫∫
τ̂

∇ξφ̂1(ξ) · ∇ξφ̂3(x)dξ =

∫ 1

0

dξ2

∫ ξ2

0

−1 dξ1 = −1

2∫∫
τ̂

∇ξφ̂2(ξ) · ∇ξφ̂2(x)dξ =

∫∫
τ̂

∇ξφ̂3(ξ) · ∇ξφ̂3(x)dξ =

∫ 1

0

dξ2

∫ ξ2

0

dξ1 =
1

2∫∫
τ̂

∇ξφ̂2(ξ) · ∇ξφ̂3(x)dξ = 0

Hence, the 3× 3 non-zero matrix entries in

Aτ
ij =

 1 −1
2
−1

2

−1
2

1
2

0
−1

2
0 1

2


as before.

On τ1 the points in anti-clockwise order starting from the right-angled corner are 8,9,7
then

A =

(
1 + 1

2
+ 1

2
−1

2
− 1

2

−1
2
− 1

2
1
2

+ 1
2

+ 1 + 1
2

+ 1
2

+ 1

)
.

The complete list of entries for (9, 9) is

A
(1)
2,2 + A

(2)
3,3 + A

(3)
1,1 + A

(5)
2,2 + A

(6)
3,3 + A

(7)
1,1.
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We note that the integration rule∫∫
τ̂

f(x) dx ≈ 1

6

[
f(

1

2
, 0) + f(0,

1

2
) + f(

1

2
,
1

2
)

]
is exact for quadratics.

Note that

f6 = L(φ6) =

∫∫
Ω

2yφ6(x, y) dxdy +

∫ 1

0

x(1− x)φ6(x, 1) dx =
5

24
+

5

48
=

5

16

and

f9 = L(φ9) =

∫∫
Ω

2yφ6(x, y) dxdy =
3

8

Hence the system of equations to solve is(
2 −1
−1 4

)(
U6

U9

)
=

(
25
96
3
8

)
=⇒

(
U6

U9

)
=

1

112

(
26
17

)
≈
(

0.232
0.152

)
to 3 d.p. which compares with the exact answer of 0.25 and 0.125.

With h = 1/3 and labelling (2/3, (4 − i)/3) Pi (i = 1 → 3) and (1/3, (i − 3)/3) Pi

(i = 4 → 6) we find

A =


2 −1 0 0 0 −1

2

−1 4 −1 0 −1 0
0 −1 4 −1 0 0
0 0 −1 4 −1 0
0 −1 0 −1 4 −1
−1

2
0 0 0 −1 2

 .

Now

fi =

∫∫
Ω

2yφi(x, y) dA i = 2 → 5, f1 =

∫∫
Ω

2yφ1(x, y) dA +

∫ 1

0

x(1− x)φ1(x, 1) dx

and f6 =

∫∫
Ω

2yφ6(x, y) dA +

∫ 1

0

x(1− x)φ6(x, 1) dx

So

f1 =
8

81
+

13

324
+

1

36
=

1

6
= f6, f2 = f5 =

4

27
, f3 = f4 =

2

27
which yields

U = (0.205761, 0.141975, 0.072016, 0.072016, 0.141975, 0.205761)T

the values of the exact solution at these points are:

u = (0.222222, 0.148148, 0.074074, 0.074074, 0.148148, 0.222222)T .
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Variations on a theme

1. We could seek continuous piecewise quadratic polynomials

a + bx + cy + dxy + ex2 + fy2

as the polynomial approximation of the triangle τ .

2. Instead of using triangles, we could use quadrilateral elements to approximate the
domain Ω and modify piecewise linear functions by bi-linear functions of the form:

a + bx + cy + dxy.

One could also change the polynomials from being piecewise bi-linear to piecewise
bi-quadratic.

6.4 Elementary Error Analysis for Finite Element Methods

Theorem 6.1
Let a be an inner-product on V and L : V → R be a linear operator. Let V h be a finite
dimensional subspace of V . Suppose u solves the problem:
Find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V (6.19)

then the problem:
Find uh ∈ V h such that

a(uh, vh) = L(vh) ∀ vh ∈ V h (6.20)

has a unique solution, and

‖u− uh‖a = min
vh∈V h

‖u− vh‖a (6.21)

where ‖ · ‖2
a = a(·, ·).

Note that uh is the best approximation to u in V h with respect to the norm ‖ · ‖a.

Proof. Let φ1, · · · , φJ be a basis for V h, so uh =
∑J

j=1 Ujφj then noting linear property
of the inner-product

bi = L(φi) = a(uh, φi) = a(
J∑

j=1

Ujφj, φi) =
J∑

j=1

a(φi, φj)Uj = {AU}i (6.22)

where Aij = a(φj, φi) and {U}j = Uj.

Since Aij = a(φj, φi) = a(φi, φj) = Aji, then A is symmetric. Now, noting the
definition of the inner-product a

UT AU = a(uh, uh)>0
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and is equal to zero only when uh ≡ 0 ⇐⇒ U = 0 implies that A is positive definite.
Hence (6.22) has a unique solution.

We now turn our attention to proving (6.21). On noting that a(u−uh, vh) = a(u, vh)−
a(uh, vh) = L(vh)− L(vh) = 0 and the Cauchy-Schwarz inequality

‖u− uh‖2
a = a(u− uh, u− uh) = a(u− uh, u)− a(u− uh, uh)

= a(u− uh, u)− a(u− uh, vh) = a(u− uh, u− vh)

= ‖u− uh‖a‖u− vh‖a

the result follows on dividing by ‖u− uh‖a.

Example 6.7
We now apply this abstract theory to

−∇2u = 2y on Ω which is polygonal (6.23a)

u = 0 on ΓD, (6.23b)
∂u
∂n

= x(1− x) on ΓN , (6.23c)

The weak from is

a(u, v) =

∫∫
Ω

∇u · ∇v dA = L(v). (6.24)

Clearly a(·, ·) is symmetric and linear. We need to check the final property of an inner-
product.

a(u, u) =

∫∫
Ω

|∇u|2 dA>0. (6.25)

Intuitively a(u, u) = 0 must mean that |∇u| = 0, i.e. u is a constant. However, noting the
boundary conditions u = 0 on ΓD this must mean that the constant is zero, i.e. u = 0.
Using this definition then a(·, ·) and L(·) satisfy the assumptions of Theorem 6.1 with
V ≡ H1

E(Ω). Moreover with V h taken to be piecewise linears which vanish on ΓD then
V h ⊂ H1

E(Ω). Hence the solution uh satisfies∫∫
Ω

|∇(u− uh)|2 dA6

∫∫
Ω

|∇(u− vh)|2 dA ∀ vh ∈ V h. (6.26)

One function which we hope will be close to uh is πhu ∈ V h where

πhu(xi) = u(xi) where xi ∈ τ are nodes ∀ τ ∈ T h.

Definition 6.1
Let v : Ω → R, then we define the norms

‖v‖∞ = max
x∈Ω

|v(x)|, ‖v‖∞,τ = max
x∈τ

|v(x)|. (6.27)
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Lemma 6.1
Assume that maxj=1,2 ‖ ∂v

∂xj
‖∞6C then

‖v − πhv‖∞6Ch.

Furthermore, if maxi,j=1,2 ‖ ∂2v
∂xi∂xj

‖∞6C and |τ |>Ch2
τ then

‖∇v −∇πhv‖∞6Ch

Proof. Let us restrict ourselves to the triangle, τ , and label the nodes in an anti-
clockwise direction 1, 2, 3, then

πhv(x) =
3∑

i=1

v(xi)φi(x) and v(x) =
3∑

i=1

v(x)φi(x).

Hence

‖v − πhv‖∞,τ6

3∑
i=1

‖v(x)− v(xi)‖∞,τ .

Now using Taylor’s theorem

v(x) = v(xi) + (x− xi)
T∇v(ξi)

hence

‖v(x)− v(xi)‖∞,τ = ‖(x− xi)
T∇v(ξi)‖∞,τ62hτ max

j=1,2
‖ ∂v

∂xj

‖0,∞,τ

this is true over each triangle and the result follows. Now define

vτ,i(x) := v(xi) + (x− xi)
T∇v(xi)

which satisfies Taylor’s theorem

v(x)− vτ,i(x) = (x− xi)
T

(
∂2v
∂x2

∂2v
∂x∂y

∂2v
∂x∂y

∂2v
∂y2

)
(ζi)(x− xi)

T

and hence assuming that maxi,j=1,2 ‖ ∂2v
∂xi∂xj

‖0,∞6C then

‖v(x)− vτ,i(x)‖∞,τ6Ch2
τ .

Now
∇v(x)−∇vτ,i(x) = ∇v(x)−∇v(xi)

hence when maxi,j=1,2 ‖ ∂2v
∂xi∂xj

‖0,∞6C we again have by Taylor’s theorem

‖∇v(x)−∇vτ,i(x)‖∞,τ6Chτ .
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Recalling that

φ1(x, y) =
1

2|τ |

∣∣∣∣∣∣
1 x y
1 x2 y2

1 x3 y3

∣∣∣∣∣∣
Then

∇φ1(x, y) =
1

2|τ |

(
y2 − y3

x3 − x2

)
and similarly

∇φ2(x, y) =
1

2|τ |

(
y3 − y1

x1 − x3

)
, ∇φ3(x, y) =

1

2|τ |

(
y1 − y2

x2 − x1

)
.

Hence

‖∇πhv‖∞,τ6C
hτ

|τ |
‖v‖∞,τ .

Hence, noting that πhvτ,i = vτ,i

‖∇v −∇πhv‖∞,τ 6 ‖∇v −∇vτ,i‖∞,τ + ‖∇πh(v − vτ,i)‖∞,τ

6 Chτ +
hτ

|τ |
‖v − vτ,i‖∞,τ6Chτ +

h3
τ

|τ |
6Chτ .

Theorem 6.2
For Example 6.6 suppose that u, ∂u

∂xi
, ∂2u

∂xi∂xj
∈ C(Ω), then

∫∫
Ω

|∇(u− uh)|2 dA

1/2

6Ch. (6.28)

Proof. Noting that the conditions of the previous Lemma hold∫∫
Ω

|∇(u− πhu)|2 dA 6
∑
τ∈T h

∫∫
τ

|∇(u− πhu)|2 dA

6 C
∑
τ∈T h

|τ |‖∇(u− πhu)‖2
∞,τ6

∑
τ∈T h

|τ |h26C|Ω|h2.
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7 Algebraic eigenvalue problems

One way of calculating the eigenvalues of A is to solve the equation det(A − λI), this
may be a lengthy process. We already know some simple bound for the eigenvalues
ρ(A) = maxi |λi|6‖A‖ for any consistent matrix norm.

Theorem. 7.1 (Gerschgorin theorems) 1. The eigenvalues of A lie in the union of the
following disks in the complex plane:

|z − aii|6
∑
j 6=i

|aij| i = 1 → n, z ∈ C.

2. If m of the disks form a connected region, being isolated from all the other disks, then
precisely m eigenvalues lie in this region.

Examples. Similarity transformation can help dilate the disks to obtain better bounds
on the eigenvalues.

Theorem. 7.2 (Rayleigh Quotient) Let A be a symmetric real matrix, then all of the
eigenvalues of A satisfy:

min
x∈Rn

xT Ax

xT x
6λi6 max

x∈Rn

xT Ax

xT x

The Power Method

The power method is a technique designed to estimate the dominant eigenvalue and cor-
responding eigenvector of a real n× n matrix A.

Let A be diagonisable, hence the n eigenvectors of A, {ui}, are linearly independent.
Order the corresponding eigenvalues {λi}n

i=1 and assume that

|λ1| > |λ2|> · · ·>|λn|>0.

Since λ1 is distinct, it is real and u1 can be chosen to be real. Further uT
1 uk = 0 for

k = 2, · · · , n.

Theorem. 7.3 (Power Method) Let v be any real vector such that vT u1 6= 0 6= uT
1 x(0).

Define y(k+1) = Ax(k), Sk =
vT y(k+1)

vT x(k)
and x(k+1) =

y(k+1)

‖y(k+1)‖
for k = 0, 1, . . .

Then limk→∞ Sk = λ1 and either lim
k→∞

x(k) = ±u1 if λ1 > 0 or lim
k→∞

(−1)kx(k) = ±u1 if

λ1 < 0.
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Proof. Any vector x(0) can be expressed as x(0) =
n∑

k=1

akuk where a1 = uT
1 x(0) 6= 0. We

are going to prove by induction that for k>1

x(k) =
a1λ

k
1u1 + λk

2a2u2 + · · ·+ λk
nanun

µk

where µk :=
∥∥a1λ

k
1u1 + λk

2a2u2 + · · ·+ λk
nanun

∥∥ .

Notice that y(1) = a1λ
1
1u1+λ1

2a2u2+· · ·+λ1
nanun and as x(1) = y(1)/‖y(1)‖, the hypothesis

is true for k = 1. Assume the hypothesis to be true for k

y(k+1) = Ax(k) =
a1λ

k+1
1 u1 + λk+1

2 a2u2 + · · ·+ λk+1
n anun

µk

,

x(k+1) =
y(k+1)

‖y(k+1)‖
=

(a1λ
k+1
1 u1 + · · ·+ λk+1

n anun)× µk

µk ×
∥∥a1λ

k+1
1 u1 + · · ·+ λk+1

n anun

∥∥ ,

therefore we have proven the induction hypothesis. Now for k>1

Sk :=
vT y(k+1)

vT x(k)
=

vT Ax(k)

vT x(k)
=

vT (a1λ
k+1
1 u1 + · · ·+ λk+1

n anun)µk

µkvT (a1λk
1u1 + · · ·+ λk

nanun)

=
a1λ1v

T u1 + · · ·+ λn

(
λn

λ1

)k

anv
T un

a1vT u1 + · · ·+
(

λn

λ1

)k

anvT un

→ a1λ1v
T u1

a1vT u1

= λ1ut

What if one of the assumptions is not valid?

? If uT
1 x(0) = 0, |λ2| > |λi| for i 6= 1, 2, uT

2 x(0) 6= 0 and our arithmetic is exact
then the sequence {x(k)} will converge to ±u2. However, in real computations,
rounding errors are likely to introduce a small multiple of u1, so we will eventually
get convergence to the dominant eigenvalue and eigenvector.

? If vT u1 = 0, |λ2| > |λi| and vT u2 6= 0 6= uT
2 x(0), we find that Sk → λ2.

? If |λ2| = |λ1| > |λ3| then defining z(k) = Akz(0), we find

z(k) = a1λ
k
1u1 + a2λ

k

1u2 +
n∑

j=3

ajλ
k
j uj,

neglecting |λj|k in comparison with |λ1|k, for j > 2, we have z(k) ≈ a1λ
k
1u1 +a2λ

k

1u2

for k sufficiently large. If λ1, λ1 are the roots of the equation λ2 + bλ + c, and

z(k) = a1λ
k
1u1 + a2λ

k

1u2 then

z(k+2) + bz(k+1) + cz(k) = a1λ
k
1(λ

2
1 + bλ1 + c)u1 + a2λ

k

1(λ
2

1 + bλ1 + c)u2 = 0.

From this set of linear equations, b and c may be found and hence λ1 estimated.

? If λ1 is a multiple eigenvalue (of multiplicity r) with r linearly independent eigen-
vectors, the power method may be modified.
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A reference is Burden & Faires p. 455

Example.

Let A =

−3 1 0
1 −3 −3
0 −3 4

 , v =

0
0
1

 = x(0) where to 5 s.f.
λ1 = 5.1248,
λ2 = −4.6477,
λ3 = −2.4771.

Since A is symmetric, the three eigenvalues are real and the eigenvectors are orthogonal.
As x(0) and v are clearly not eigenvectors then vT u1 6= 0 6= uT

1 x(0).

y(k) =


 0
−3
4

     
estimates for λ1 = 4, 6.25, 4.36, 5.90, 4.53, · · · .

Some ways of speeding up the convergence are

? Using Aitken’s ∆2-method we can accelerate the convergence.

? Origin Shift : Let A have eigenvalues λ1 → λn then the eigenvalues of B := A− bI
(b ∈ R) are µi = λi − b (i = 1 → n). Suppose for simplicity, n = 2 and λ1 > λ2.
Then the dominant eigenvalue of B is either µ1 or µ2 depending on the choice of b.
If the dominant eigenvalue is µ1 then the convergence of the power method depends
on |µ2/µ1| = |λ2 − b|/|λ1 − b|, choose b so that this quantity is as small as possible.

Let B = A + 4I =

1 1 0
1 1 −3
0 −3 8

 v =

0
0
1

 = x(0).

y(k)


 0
−3
8

     
estimates for µ1 = 8, 9.13, 9.11, 9.12, 9.12, 9.12. Convergence is much better than before.

This method can be used to shift the other eigenvalues and make them largest in
magnitude.
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Sturm sequence property

Let A be a real symmetric tridiagonal n× n matrix. Defining

f0(λ) = 1, fk(λ) = det


α1 − λ β1 0 · · · 0

β1 α2 − λ β2
. . .

...

0
. . . . . . . . . 0

...
. . . βk−2 αk−1 − λ βk−1

0 · · · 0 βk−1 αk − λ


we get the recursion relation

fk(λ) = (αk − λ)fk−1(λ)− β2
k−1fk−2(λ) k = 2 → n.

Assuming that βk 6= 0 (k = 1 → n − 1), then the number of roots of fn which are
greater than a is given by the number of agreements in sign of consectutive members of
the sequence {fk(a)}n

k=0; if fk(a) = 0, let its sign be opposite to that of fk−1(a).

Jacobi’s method

Given a real symmetric matrix A, Jacobi’s method uses similarity transformations to
eliminate apq where p 6= q. Let U be the orthogonal matrix defined by

uij =


δij if i 6= j and {i, j} 6= {p, q}
cos θ if i = j = p or i = j = q

sin θ if i = p and j = q

− sin θ if i = q and j = p

Noting that UT AU has the following form

A(1) = UT AU =




where the lines represent elements in the p’th or q’th row/column which have been trans-
formed (all other elements of A remain unchanged). The elements where the lines cross
are given by

a(1)
pp = app cos2 θ− 2apq cos θ sin θ + aqq sin2 θ, a(1)

qq = app cos2 θ + 2apq cos θ sin θ + aqq sin2 θ

and a(1)
pq = (app − aqq) cos θ sin θ + apq(cos2 θ − sin2 θ).

A calculation shows that θ satisfying

cot(2θ) =
aqq − app

2apq

=⇒ apq = 0. (7.29)

Jacobi’s method is decribed iteratively as follows:
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1. Set A(0) = A and k = 1.

2. At the k’th step, select a
(k−1)
pq to be the largest in absolute value off-diagonal element

of A(k−1).

3. Set U (k) to be the orthogonal matrix described above where θ satisfies (7.29).

4. Set A(k) = (U (k))T A(k−1)U (k).

5. Let k = k + 1. Either STOP if the sum of the squares off-diagonal elements is small
or GOTO 2.

Theorem. 7.4 Let A be a real, symmetric n × n matrix. The sequence A(k) described
above converges to a diagonal matrix D.
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