4H Numerical Linear Algebra & PDE’s M ATH4041
Epiphany Term: Solutions

1. From a theorem in lectures it is known that the Jacobi and Gauss-Seidel iterates converge for
diagonally dominant matrices, thus both iterates converge when |p| < 1. Which converges faster
though?! We know that e®) = x®) —x = M*e® thus ||M|| will give the speed of convergence.
Noting that the eigenvalues of

_ (0 _ (0 p
M"_(ﬂ 0) MGS_(O —p2)

are £p and 0, —p? respectively, we conclude ||M ||z = |p| and || Mgs|l2 = p?, i.e. the Gauss-Seidel
method is much better.

2. Let A= CCL 2) where ad # 0, calculating the iteration matrix for the Jacobi and Gauss-Seidel
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The eigenvalues of the iteration matrices are + Z—Z and 0, —% respectively. Thus, in both

cases we require that [2] < 1 for convergence. The Gauss-Seidel will converge faster since the
magnitude of the largest eigenvalue is smaller.

methods:

3. The matrix given in the question is diagonally dominant, so both Jacobi and Gauss-Seidel
iterations are known to converge. The Jacobi and Gauss-Seidel iteration for the equation are

2 . 15 — :ng) - xék) A 1 15— xgk) - xi(ak)
) | — 0|24~ 2B — 2B | and | 20V | = ol 24— 2 — g
x:(),kﬂ) 33 — xgk) - xék) .r:(z,kﬂ) 33 — $§k+1) - xgkﬂ)

If £ = (0,0,0) then the table of Jacobi and Gauss-Seidel iterations are:

1.5\ /0.93\ /1.017\ /0.9969\ /1.00065\ [0.999873
A 2.4 1.92 | [ 2.016 1.9968 | [ 2.00064 1.999872
3.3/ \2.91/) \3.015/ \2.9967/ \3.00063/ \2.999871

1.5 0.9825 0.9989925 0.9999882825
z® 2.25 2.00925 2.00001825 1.99999127925 | ;
2.925/ \3.000825/ \3.000098925/ \3.000002043825

both appear to be converging to (1,2,3). Using the inequality
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where M is the Jacobi iteration matrix, we can ensure that the Jacobi iterations are accurate
to 6 decimal places by enforcing the inequality

My 1% _
A calculation reveals that || M]|o = 1/5 and ||V — 2@ || = 33/10 thus we require
5 33 . L 33 x 107
—< < b'>—— <— k>10.
4><5k><10 5 x 10 5 10 0

. The iteration Jacobi and Gauss-Seidel iteration matrices for A are:

0 a O 0 a 0
My=1a 0 a Mas=10 —a®* a
0 a O 0 o —a?

The eigenvalues of M are 0, £v/2a2 and of Mgg are 0,0, —2a%. The Jacobi and Gauss-Seidel
methods converge/diverge if the magnitude of the eigenvalues are < />1, i.e. we have conver-
gence if a < 1/ V2 and divergence if a>1/ V2.

Since a < 1/4/2 the eigenvalues of the iteration matrix in the Gauss-Seidel method will be

smaller and hence the method converges faster than Jacobi’s method.
With £ = (0,0,0)7 the Jacobi and Gauss-Seidel iterates are:

2 0 1.5 0.5 1.25 0.75 1.125 0.875 1.0625
4 1 3.0 1.5 2.50 1.75 2.250 1.875 2.1250
4 2 3.5 2.5 3.25 2.75 3.125 2.875 3.0625

CB(k) .

2.0 0.50 0.750 0.8750 0.93750 0.968750 0.9843750
x®) 3.0 2.50 2.250 2.1250 2.06250 2.031250 2.0156250
2.5 2.75 2.875 2.9375 2.96875 2.984375 2.9921875

Clearly the convergence of the Gauss-Seidel iteration to (1,2,3)? is superior.

. The Gauss-Seidel method for Ax = b is

(D+ L)yx**) =b—-Uz®™ = B=—(D+L)"'U and ¢ = (D + L) 'b.
and Dzt = b+ Dx®™ —(D4+U)2® — L™ = 2* ) = WL D7 (b—(D+U)2x®) —Lakt)
The successive relaxation formula is
x* ) = 2® 1D b—(D+U) 2™ - La* V] = (I+wD ' L)x* V) = (I—wD Y (D+U))x®™+wD~'b
so that M, = (I +wD 'Ly (I —wD YD +U)) and d = w(I + wD™'L)"'D~1b. Let

A= (8 g) = renmnt = (L, §) w-eotoron = (Y50 )

1—w



== (0 o 103 )

Thus

be be
A, 0=det(B—ul) =p* — — =0,—.
, 0 = det( ul) =p ad,u:>,u O’ad

w?bc

ad

0=det(M, — )= (1 —w—A)?—

Thus (A — 1 + w)? = Aw?u where \ is an eigenvalue of M, and p is the largest in modulus
eigenvalues of B.
The definition for the asymoptotic rate of convergence comes from the fact that

e® — o — 2 — e

and M* will converge to 0 at approximately a rate of p(M). Defining p(B) = |u| = 1 — ¢ and
taking w = 1.5
0=X2—(2(1 -w)+w*u) A+ (1 —w)?
——

N J

:1.25?:2.255 =0.25
\ 1.25 — 2.25e + 1/(1.25 — 2.25¢)> — 1 1.25 — 2.25¢ & 0.75y/1 — 10¢ + 9e?
- 2 - 2
_ 1.25—2.25e £ 0.75(1 — 52 + O(?))
- 2

so that p(M) =1 — 3¢ + O(g?). Thus the asymptotic rate of the SOR formula is — log(1 — 3¢ +
O(e?)) ~ 3¢, three times better than the Gauss-Seidel iteration.

. The iteration matrices for the Jacobi and Gauss-Seidel methods are

o
|

0 0

1
and MGS = Z
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The characteristic equations are A2(A\? — 1/4) and A\*(\ + 1/4) respectively. Thus

—log p(My) = —log 0.5 ~ 0.6931 and — log p(Mgs) = —log0.25 ~ 1.386

40

is to be solved by an iterative method, starting with :c§0> =0= xgo). The Jacobi and Gauss-
Seidel iterations are respectively

xgk+1) B 1+ xék) nd xgk‘+1) B 1+ xék)
xék;—&—l) 3 _ x(1k) .l’ék+1) 3 ng—f—l)

. The system



CE) @) () () (5)- ()

0 1

() 6006

Also note that the eigenvalues of M; = (_1 0) and Mgg = (8 _11) are £7 and 0, —1

respectively, so that p(Mgs) = p(M;) = 1 and neither iteration will converge. The SOR
iteration, 0 < w < 2, converges if the eigenvalues of the iteration matrix,

M, =T +wD 'Ly (1 —w)] —wD'U) = (52__“:) L 5_ w2> ,

are smaller than one in modulus. Using question 10.1 ¢ = —1, or computing directly, we need
to find Ay, Ay which solve

O=det(M, —A) = (N =1+ w)? +d? =21 - (2(1 —w) —wHA + (1 —w)?

= ) e ‘/(2(12_“’) —PE A w21 -w) —u? ime.

Thus, computing |)\;| we have two cases to consider when w? + 4w — 4 < 0 and >0. Notice
w? + 4w —4=0iff w = -2+ 2y/2. For w € (0, -2 + 21/2) the roots are complex and

wt—4w? (1—w)+4(1-w)?
7\

(2(1 —w) — (,02)a +w?(4 — 4w — W?)

Mf* = Ao = 1 =(1-w) = p(M,) =1 —wl.
For w € [~2 + 2v/2,2) we want
2(1 —w) —w? Fwvw? + 4w — 4 w? wVw? + 4w — 4 w?
-1< <l<= 24w+ <= <w+ —
2 2 2 2
That is

wvw? + 4w —4 w?

<w+7:>w2—|—4w—4<(2+w)2:w2+4w+4<:>—4<4!

2
And
2 Vo 1 4w — 4
—2+w+% S J; YT (0P w—A) < (4-2w—w?)? = Wt dwP—4w?—16w116 <= 0 < 16(1—w).

Thus any w € (0,1) will do. Plotting the graph of p(M,,)



6 \ \ \ \ \ \
p(M,) = max{| ], [A2|}

0 \ \ \ I \ \ \ \ \
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Notice the discontinuity where the discriminant changes sign. A reasonable value to take for w
is 0.5 in which case p(M,,) = 0.5. The best value to take for w is —2 + 2¢/2.

. Let X and e be an eigenvalue/vector of M; = —D~Y(L + U). Thus premultiplication by e’ D
and rearranging yields

de=—-DYL+U)e<+= \e’"De=—e"(L+U)e=e"De—e" Ae

2eAe 2e! Ae
2eflDe el(2D — A)e + e Ae’

Since A and 2D — A are symmetric positive definite matrices, see lecture notes,

= A=1-—

0<e’Ae < e (2D — Ae + e Ae

so that —1 < A < 1 and therefore p(M;) < 1. Since the eigenvalues of the Jacobi iteration
matrix are smaller than one, the Jacobi iteration will converge.

. The modified Jacobi iteration for the linear system Ax = b is given by

Dz = wb+ (1 —w)Dz™ —w(L +U)a"™ =wb+ (D —w(D+L+U))z®
=A

— 2* ) =D o4 (I —wD ' A)x®),
i.e. Myry =1 —wD'A. If the iteration {x*)} converges to x it satisfies
x=wD b+ ([ —wD 'A)x <= wD 'Ax = wD 'b <= Az = b.
Let {\;}, be the set of eigenvalues of the Jacobi iteration matrix, i.e.
~D YL+ U)e; = \ie; thus pie; = Mye; =€, —wD Y (D+L+U)e; = (1 —w+wh)e;,

ie. p;=1—w(l—=\). If all the eigenvalues \; are real then

I —w(l =)<l —w(l—N)



10.

11.

so that the greatest magnitude of u;’s may be minimised by taking w so that the upper and
lower bound have the same value in magnitude

- 2
—(1-wl-AN))=1-w(l- NN +E=w=—""--—
(1wl =) =1 -l =) &= o = g
For
2 -1 -1 1 0 1 1
A=|-1 2 1 ,MJ:§ 1 0 -1
-1 1 2 1 -1 0

The eigenvalues of My are —1, ;, 5 so that p(M;) = 1 and the Jacobi process does not converge.

Since A = § and A = —1 taking w =2/(2— 1 +1) = 0.8 p(Mp;) =1 — w(1l — X) = 0.6 so that
the modlﬁed Jacobi iterates will converge.

Since u is analytic, it agrees with its Taylor series expansion about (jh,nk), hence

2 k?’ k?4
u;.”rl = u(jh,(n+ k) = u+ kuy + —wy + —Usr + —Ugpe + -
2! 3! 4!
so that rearranging
utt — oy u(jh, (n + 1)k) — u(jh, nk k k? k3
J k — (j ( >k;> <j ) = U + 2|utt + 31 — Ut + EUtttt + -

Consider the Taylor series expansion about (jh,nk) of

n h? h3 h4

Hence subtracting the “+”terms disappear
. o h3 h5

uiy —ui_q = 2hu, + 2 oy Uaae + 2y Uasaaat
Hence . . 2 I

Y1 — Ui

. T Ug 7 Uzzx — Uzzzzx

2h * 3! * 5! i

Calculating the truncation error and noting that w; = ug,, k = %2, Uy = (U )t = (Up)ge =

(uazw)zx = Uggazr, Uitt = Uzzzzzx and

Wt —n 1
= %_ﬁ[”l 2u} +uj_ 1
TLIE P et +
TR The 12 360
h? h? h? h?

= o)



12. (a) The truncation error is

n+1 n n
—_— uy ™t — B 6% [ w
J k h? 2h
+ L — (Uge + i +)
t 91 tt 192
h2
_a(um + guzmx +oe )
k h2

h2
_a( 3' Urrx + - )

= O(k)+ O(h?)
and hence 77" — 0 as h,k — 0, so the scheme is consistent.

(b) Assuming that w is analytic
2 k’2
u;‘jfll - u?“ = u+ huy + ku; + 51 — Uy + hkUgy + — 2
%—hg +—3h2k +-3hk2 +-k3
Ugze Ugq Ug
3! 31 g e g
/{32 3
- (U+kut+ — Uy + 3l uttt+ )

BY
h? hk k2
3' Ugza + 3 3 Uyt + 3 3'

Uggt + -

2

= hu, + h—um + hkuy + h {

9] Uactt:| +oe

and also
2 h3

PIRT]

hence on noting that uy = (—au,); = —au., the truncation error is given by

ui y =u— hu, + Ugpgr + -+ -

o Y Uj NI i U 4 Uy — Ui
I k h h

k +k2 ol b
2'utt 31 Uttt B Uy ol

h? hk k? h h?

3! I T 2 3!

n+1 n un+ 1 n+1
2

= U+ Ugy + kuxt

-y Ut

k}2
Ik 3!
a [h? 3hk oK 2
_'_5 3‘ 7 Uzzx + 3 Uzt + 3 Ugtt + -

= O(k*) + O(h?)

= (w + auy) + = (uy + aug) +

and hence the truncation error converges to 0 as h, k — 0.



13. (a) Noting that

ulyy —2((1— 0t 4 0uf) + uf

7—1
h2 h3 h4 h5 6
k2 33 ot .
2| (1—=0)(u—ku + — op Wit = 3y e + Yttt + O(k%))

2 3! 4!

h? h3 h h5 ;

k? k3 k4
+9 (U + kut + — Uyt + — Ut + — Uttt + O(k5)))
u — hu, +

h? X ;
= 92 {2‘ Upy + o —Uggae + O(R°)

2 3

k
—2 (k(20 — 1)Ut + ol — Uy + = 31 (2(9 — 1)uttt + O(k4))

On noting that 2 = 1 and u; — u,, = 0, the truncation error, T7', for the first discretization
is

u =t = 2((1 = O)u Ut +un

n _  J J g+l J J j—1
I = 2k h?
k? 2h?
- ?uttt + O(kA) |:( A1 Ugzzr T O(h4))
k k2 3
h2 k k2
= (20 = Dttaw + (= + ) Uawae + 57200000000 + O(k*) + O(h*)

Hence for § = 1/2, T} = O(h*) + O(k) = O(h*) — 0 as k, h — 07

(b) We start by calculating

n n+1 n
Ui — 2u5 gy

h2 3 4 k’2
2 h3 h4

2h? 2h! k?
= Tu$x+juxwxm+_2 kut+ 2|utt+



hence the truncation error is, on noting that u; = ug,,

n+1 n n n+1 n
J k h2
k2
= ut+k‘utt—|—§uttt+---
2h? k

2h? k2

which converges to zero when u — 0.

14. (a) Consider the j'th row where j = 2,--- ,m — 2 with the ansatz suggested:

aj:c;?,l + djxf + cj:c;?H
kr(j —1 kmj kr(j+1
= asin(—:g]+ N >) + dsin(—mj_]l) + asin(—:g]:_l ))
fori

= |2acos( T 1) + d} sin(mj_jl) = Ak

When j = 1 (we introduce x§ = 0 = sin(%))
dio¥ + ciah = ayal + diah + cah = {2@ Cos(m i 1) + d] Sin(m ) = Az
Similarly, with j = m (we introduce z,,,1 =0 = sin(%))
k
a4 dpah + epat = [Qa cos(m n 1) + d] sin(mﬂf ) = ezt

Hence, =" is an eigenvector of A with eigenvector given by \j.

Since the eigenvalues are distinct, the eigenvectors form a basis for R™.

(b) This was done last term, but is included here for completeness

15. To prove that ||Vl = sup;cz [V;| defines a norm on S we need to check the key properties.
Obviously || V|« is non-negative and

[V]w=0+<=|V;| =0V j€Z<+=V;,=0Vj €L

Secondly
AV [loo = sup [A[[V;] = [A[sup [V;] = [A[[[ V][
JEZ JEZ

Finally, for all j € Z
U; + ViI<|Us| + |Vj|<suzp|Ujl +st€112>|‘/jl = [1Uloo + [[V]loo
J

JE



and hence taking the sup over all j € Z yields the triangle inequality.
For the proposed norm,
D hVP < oo

=/

the first two properties follow easily. The triangle inequality is slightly more difficult. We start
by proving the triangle inequality for a finite sum. Define

(V.W) = > LW,

l71<n

this is clearly an inner-product. Let W # 0 (if it is zero, the Cauchy-Schwarz inequality is

trivial) and choose n sufficiently large so that Z hVVj2 # (0. Consider
lilsn

0<K(V 4+ AW,V 4 AW) = > " h(V; + AW;)° = D VP + 20 Y hV; W+ A2 ) - hv.

lil<n lil<n lil<n lil<n

This is smallest when

> Wy

o d _ 5 i
lilsn l7l<n j
l71<n
Hence, taking A to be that given above,
2 2
9 <Z|]|<n h‘/;WJ> 2 2
nghv}_ S e B2 = ZthWj gZth ZhVVJ
jI1<n lilsn TR jI<n jl<n Jji<n
Now starting with a finite sum and using the Cauchy-Schwarz inequality
ST hU+ VP =Y hUF+2) WUV + Y RV
lilsn lil<n ljI<n liI<n
1/2 1/27 2 12 17272
() (Zwr) | < (Sur) ()
lilsn i< jez jez

Hence letting n — oo we get the result on taking a square-root.
16. Set u(z,t) = etV sin 7z, noting that

up = (=72 + DU, Upy = —T°U, = Uy — Ugy — U =0



The other two properties follow trivially.
Assume! the solution to the finite difference scheme has the form

Uj = g"sin(mjrh) m,j=1,---,J—1
where h = 1/J, note boundary conditions are satisfied. Then since
52UJ’7 = Uy =200 + U,
g"(sin((j + 1)mmh) — 2sin(jmmh) + sin((j — 1)wmh))
2¢g" [cos(mmh) — 1] sin(jmmh)

it follows that for j=1,---,J —1

h
g sin(jrmh) = (1 — 4u sin%%) + k)g" sin(jwmh)

and so

h h
gt = (1 — 4psin® % +k)g" = ¢" = (1 — 4y sin e k)'g°

Since g = 1 — 4y sin? ™2 ”mh +k, i.e. it is dependent on k. For instability?, we need that | g"| — oo
and k — oo such that nk: is constant for some m. First we note that forallm=1,--- | J —1
h h 4k h
1 —4u sin? o + k<l <= k<dp sin? % k<ﬁ sin? %
4 5, mmh 4 sin® ’”;h
<~ 1<ﬁ sin T g 1<T.
Noting that
4 sin? Tmh
lim ———2— = m*7> > 1.
P h? m

We conclude that the above inequality to be true for h sufficiently small, that is 1 —4sin® T2t ’Tmh -+

k<1, and no instability.
As for the other inequality suppose p > p, = (2 + k)/4. Let € > 0 satisfy pu = %, then
taking m to be the nearest integer to J/2 it follows that

h h
(1 — 4psin? ™2 +k)—1:(2+k+5)sin2%—2—k25

Hence |g"| 2 |1 +€|" — 0.

1Tt isn’t difficult to show that sin(mgjnh) are eigenvectors for the computational matrix and that they form an
orthogonal basis
ZNotice that from the main Theorem, stability with respect to the | - ||2 is equivalent to
T
<t+Ck, Vee|-T7].
lg] 3 0
To prove that a scheme is not stable with respect to the || - ||2 this is equivalent to proving that
T
lg| > 14 Ck, for some ¢ € [—7, f}
h’h
as k — 0V fixed constants C'. Note that if g is independent of & then it is sufficient to show that |g| > 1.



17. The #-method for solving u; = u,, subject to initial condition u(z,0) = u°(x) is

1
lUT‘“—U” = — [082°U™ + (1 —0)5°U"|, U?=u"(jh).
J J J J

L 2 J
Noting that
Ful ™t = it — 2uft i
h? k?
= u—+ hu, + kug + Eum + hkug + ?utt
1
+3| (D3 Ugpy + 3h2ktigey + 3hE Uy + K3y ) +
2 k3
—2(U + kut + 2 — Ut + aum + )
h? k?
+u — huy, + kug + ?um — hkuy + ?Utt
3'( h Ugpper + 3h kumt — Bhk Uyt + ]f uttt)

2 2

= hu,, + —'(3h2k‘umt + KPugy) + 1 = (W pzre + 6h2E Ugprr + K st
L2
+5 = (5h* ktgaper + 10R? k3 Ugaue + K Uspire) + -

Hence on noting that u; = u,,, the truncation error is given by

1 n n 1 n n
5= E(“jH —uj) oy [60%u5 ™ + (1= 0)3%uj]
- L
= U+ Q'Utt + 3] o7 Wttt 1
2 2
_0 |:u:c$ 3' (3kux$t + k ,uuttt> + E(h4u:v:c$$ + 6h2k2uzxtt + k4utttt)
2 . h2
k h?
- (5 — 0k — ﬁ(l — 9) — 9 h4)umm
k2 2 21.2 4
(5 — 93' += Z6n2k2 + 5!5h k) gzzzns + -
= O(k) +O(h?)

When 6 = 3, it is clear that T)" = O(k?) + O(h?)
18. Suppose that Uj' = g"e“" then substituting this into the propose scheme yields
n+1

ijh ’u<gnei(j+1)h - 2gn+1 ijh + g e (]—l)h)

= 2u(g" cos(h) — g"*")

(" —g")e

ezgh



hence we obtain

211 cos(h) + 1)

1+2u)g" ™ = (1+2 h))g" — ¢" =
( M)g ( NCOS( ))9 g ( 149
We have stability

—(142u)<2pcosh + 1<1 + 2p <= pu(—1 — cos h)<1 and cos h<1

both of which hold.

From problem ??b we know that |T}'| — 0 we require that y — 0 as h,k — 0. Hence under
such a condition from Lemma 2.1 we have convergence.

Suppose that h = %, then we should choose & = h**® for some ¢ > 0 as J — oo to ensure

convergence and the rate of convergence will be O(h?).
19. Suppose that U = g"e”*. First note that
52U = —4sin’(§)g"e
o1 — Uiy = g"(/UTDe —eUm08) = 24sin £g"eV*
then substituting the ansatz into the finite difference scheme

n+1 n n n n

k h? 2h
yields
(g™ — g")e = —dpsin®(5)g"e + aisin gg"e s
hence

g™t = (1 — 4pusin®(§) + adisin€)g" = ¢" = (1 — 4psin® § + 2aXisin(§) cos(§))"g".

Noting the independence of g on k, to ensure stability we require that |g|<1. Noting that u<
and a?)\2<2pu, it follows that

1
2

g = |1—4,us1n25—|—2a)\251n( ) co
= 1+4usm( )(—2 + 4psin (%
< 1+4psin®(§) (=2 + 2sin?(§)

(g)| (1—4,usin2(§)) +4a?\2sin? & 5 cos g

cosz(g))

)+
+2c0(§)) = 1.

a

Note that a?\?<2u<l = |a|A<1. 3

3If we were not given the conditions how would we derive a condition? Obviously, we need

4/”1“2(5) + &5 A cos (g) = (4p — - A )smz(g) + azﬁ\z<2

to hold for all £&. Hence, we require that
dp<2 it plalh/2,
XL i p<al)/2.

The question set of type Section A, the extra bit I have just done is of type Section B.



20. Define Uy = U; = 0, then the j’th row of the equation is

Urtt = UM pl0(URE =207 + UM + (1= 0)(Ufy — 207 + US)] + kU
= —pbUM ! + (1+2p0) U — poU
=1 =0)uUi + (1 =2(1=0)u+k)U} + (1 —-0)uU},

and hence
14+2u8  —pb 0 0
—pl 1420 —ub :
: —pd 14+2p0 —pb
0 0 —pnf 1+ 2u0
and
1-2(1-0)u+k (1—-0)u 0 0
(1—0)pu 1-201—-0)u+k (1-0)u :
M, = 0 0
: . (1—-0)p 1—-2(1—-0)u+k (1—-0)u
0 0 (1-0)p 1-2(1—0)p+k

21. Noting that v, = —(au),

u = (=(aw)e)r = (=(aw)i)e = —(aw). = (alaug)).

and the Taylor series about (jh,nk) is
k2
U;,“rl = U(]h, (TL + 1)]{3) =u-+ kut + _2' Uy + O(k’g)

The Lax-Wendroff scheme is

U™ = U 4k x o [=apaUfy + 4 UL | + 57 X 75 [3la;é(a,U7)]
where
6la;o(a;U)] = dlaj(ajpryeUlts o — ajo172Uf 1 0)]

_ n n n
= 117205107 — (54172 + ajo172)a; U} + aj1p2a;,1 U

Noting that

h2
ajiuy, = au £ h(agu+ au,) + g(amu + 2a,u, + atigy) + - - -
A1ty — G = —(au), + O(h?)

2h



and

8(ajult) = h(au), + O(h?)
— [(5[aj5(aju?)]} = 0lha(au), + O(h*)] = h*(a(au),), + O(h*)
Hence
1 n n n k2 n
TP = % [u;“r —u" — kX % [—ajul ) +a;qu)_] — 57 % % [(5[6@6((%1@)”}
= [ S 00 = k=@, + 002) - S ataw,). + 002)

O(k2) + O(h?).

. The scheme of which I talk is

n+1 n a\ n n a’2/\2 21 0 . 0 .
Hence
1 if j<—2
Ul 1-2(1+4a)) ifj=-1
! (aX —1)% if j =0
0 if j>1
If the artificial diffusion were not present, then
1 if j<—2
Ul 1-% ifj=-1
J ak if =0
2 17
0 if j>1

and hence the artificial diffusion solution is immediately smoother with no spikes.

. Noting that

" — L e —u 1
J 2k 2h

we deduce consistency. Let the CFL condition holds |a|A<1. Since a constant and assuming

the ansatz U7 = g"e”* it follows in the usual way that

+— (ajul ] —ajul7)) = u+0(k)+(au),+O(h*)+A0(k) = O(k)+0(h?)

¢> =1—2iaAsin€g <= ¢* + 2iadsinég — 1 = 0 <= g = ia\sin & + \/1 — a?)\?sin? €.

Thus
lg? =1 — a® ?sin? € + a®M?sin? € = 1

and the scheme is stable.



24. We begin by integration the problem over (z;, z;+1) X (y;, yj+1) then

Titl LY+ T 92, O0%u
o= [ [ ] e
v Ou m [y ou
= / |i z+17y) O ($27 )1 dy—'_/:cZ [a_y(inaijrl) _a_y(x>y]):| da
h
h

1 1
( uW(Tip1 + 5 h Y5t h) u(wip1 — —h, yj + 5@)

2

|
(ua:ﬁ—lhyj%— —h) — u(z; hijr h))
i

1 1
uxl+2h Yj41 + h)—u(xl—k h L Yj1 — 2h))

1 1

which leads to the five-point difference operator:

0 = —qUIHY2IHY/2 4 rid/2541/2 | pris1/20+1/2 ik 1/2,543/2 4 rit1/2,-1/2

25. Since both of the approximations for u; and u, are second-order in time and space, respectively,
I expect the method to be second order in both space and time.

A A
R o b0 S+ DR) = F(8))
-1 1 1 -1 1 1 0
313 -3 14 A !
0 o' 2 0 o' 2 1 3a(nk) — g((n+ 1))

26. Let U;; = u(ih, jh). Define
Ui?j = g<lh7jh) if either ¢ = 07n or ] — O’n

this deals with the boundary conditions. Otherwise, we approximate the equation at interior
nodes using the usual approximation for second derivatives

1 1
—2 (U1 —2Ui 5+ Uiaj) — e (Uijsr —2Ui; +Uij1) = fi

where f; ; = f(ih,jh). Which we can rewrite as

2
—Uij1 = Uipr; +4U; 5 = Uirj = Uija = W7 fij



Hence we arrive at the system of equations

D —-I 0 - 0
-1 D I .o
: . =1 D -1
o -~ 0 —-I D

where [ is the (J — 1) x (J — 1) identity matrix, 0 is the (J — 1) x (J — 1) zero matrix and D
is the (J — 1) x (J — 1) matrix

4 -1 0 0

-1 4 -1
D=1o 0
~1 4 -1
0 0 -1 4

27. The three points lie in a plane and order x, x5, 3 in anti-clockwise order. Define x; as the
origin and the vectors 2 — ;1 and x5 — x; to lie in the z-y plane. Hence (z; — x;) A (z — ;)
gives a vector in the positive z direction. Note that

0 0 1
(0, 0, 1)T ) (wj - wz) A (wk - 3’51) = |T21 —T11 T2p—T12 O
xr31 — X111 T332 —T12 0

gives the volume of the parallepiped with edges given by the vectors xs — 1, x5 — x; and
(0,0,1)T which is also the area of the parallelogram base. Now, the area of the parallelogram
is twice that defined by the triangle with corners @, x5 and x3 hence is

0 0 1
27| = |za1— %11 Xa2—x12 O
xr31 —X11 T332 —T12 0

transpose 2 X 2 matrix 0 To1 —T11 To2 — T12
0 T31 —T11 T332 — T12

—
transpose 3 X 3 matrix

1 0 0
CAz(w11) |0 To1 — X171 Too — T12| RAs2(1) |1 o271 a2
- -
- — 1
CAis(z1,2) 0 @31 =211 T32 — 12 RAs1(1) T31 3.2
T11 T12 1 211 712

P |1 211 g Ps |1 w31 732

— —

Pas 1 T2,1 T22| p,, 1 X111 T1,2
1 xr31 T3.2 1 To1 T22

28.



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

The element stiffness matrix is

—_
|

N =
|

N[ =

AT

N[0 =
= O

o=

After applying the conditions at (0,0), (0,1), (1,0), (0, %), (3,0) and (3, %) we are left with

a matrix to invert. There a unique solution if and only if the determinant of the matrix is
nON-Zero.

18(1)88(1) 01 001 010 0 1
L 10010 [1O0 1T 0achloo0 1 0
_ 1 1l — 1 1
101001_?5091,425(—%)050011
12 1 4 5 00 70 000 —20
s 00 3 0 i 1 1 12 g0 L 1 _1 1
1%%%%% 2 2 4 4 4 2 4 4 4
1 1
1881 1101A12(—%)1101 1
- |2 L A==l o oo 0 = —
OO—ZO 4lll 13(_5)401 1 64
%%_ii 2 4 4 4 4



42. A. The Gerschgorin discs for the matrix A are |z — 2|<4, |z — 4|<3, |z — 10]<2, z € C.
I I

4 T \ \
Sr / 7 /"_‘\‘\f N |
2|/ Ve N\ ]
1 / \\

/ ! by
0

/

1 N / -
-2 7 i
3k N i
4 \ \ \ \ \

-2 0 2 4 6 8 10 12

B. The Gerschgorin discs for the matrix B are |z 4+ 5|<1, |z — 1|<3, |z +4|<1, z € C.

C. The Gerschgorin discs for the matrix C' are |z — 3|<3, |z — 1|<3 both twice, z € C.



3 \ \ = \ - \
7 ~.
2 | ) / // \ |
1 L/ ' \\\\ ]
, \
/
\ 1
-1 —‘ ) 7/ —
T \ / i
3 \ | | \ \
-2 -1 0 1 2 3 4 ) 6

43. The Gerschgorin discs are |z — 0.9]<0.03, |z — 2.2|<0.02 and |z + 2.8]<0.03 where z € C. These
discs do not intersect. Introducing the similarity transofrmation

E 0 0 0.9  0.01k~' 0.02k7!
P=101 0| wefind B=P'AP = [ —-0.01k 22 0.01
00 1 0.01k 0.02 —2.8

so that the Gerschgorin discs are |z —0.9|<0.03k™!, |2 —2.2|<0.01(1+ k) and |2 +2.8]<0.01(2+k)
where z € C. The discs do not intersect as long as

0.940.03k" <2.2—0.01(1+k) and —2.8+0.01(2+ k) < 0.9 — 0.03k ™"

In the picture below we have set £ = 100

1.5

I TN TN .

05 L / \ i

0 ' ®
-0.5 \ / -

1+ E\\\_// |

-1.5 | | | |
-4 -2 0 2 4 6



44.

45.

46.

The first inequality is true for k<128.97 - - - and the second one is true when £<367.99---. Thus
taking k = 128 we get the improved bound of |A — 0.9] < 2.35 x 107,
Introducing a similarity transformation to dialate the |z — 2.2| disc we find

0.94+0.01(2+k) <22—0.02k"" and —2.840.01(2k +1) < 2.2 — 0.02k*

which are both true when k<127, thus taking k& = 127 we get the improved bound of |\ —2.2| <
1.58 x 1074,
And finally in an anologous manner, taking k = 368 we get the improved bound of |\ + 2.8| <
8.16 x 1075,

The Gerschgorin discs are
M —(0.9+107%)|<6 x 107°, [Ny — (0.4 +5x107°)|<2x 107°%, |A3— (0.2+3 x 107%)|]<3 x 107°

which do not intersect, so we can use a similarity transformation, as suggested,

09 0 0 0.1 4x10% —2x10°°
D'BD, =0 04 0 |+10°| —10* 0.5 0.1
0 0 02 2x10* 0.1 0.3

so that the Gerschgorin discs are
A1 —(0.9+107%)]<6x 107", [Ag—(0.44+5x107%)|<0.14+107%, |A3—(0.24+3x 107%)|<0.24+107°.

The disc centred on 0.9 + 1079 is still disconnected from the others, so we obtain an improved
bound. The remainder of the question works through in exactly the same fashion with the
improved bounds being

Ao — (0.4 +5x107%)|<2 x 107" and |A\3 — (0.2 +3 x 107%)|<3 x 107

Using MATLAB

k 1 2 3
x® | (—0.5789,1, —0.5789)" (—0.5775,1, —0.5775)7 —0.5774,1, —0.5774)T
SF 4 3.75 3.73

it appears S* is converging to the dominant eigenvalue which is probably 3.7 to 3 d.p. In fact
the largest eigenvalue is 3.732 to 3 d.p.

Take () = (1,0,0)” and v = (1,1,1)”. Again using MATLAB

k| 1 2 3 4 5
1 0.5 0.4516 0.4459 0.4451
z® | |1 0.8333 0.8065 0.8025 0.8020
1 1 1 1 1
Skl 3 4.667 5 5.043 5.048

Using all of the digits available in Aitken’s acceleration, we found the limit of Sy to be 5.049 to
3 d.p.



47. Using the power method with £ = (1,1,1,0)7 = v to compute the largest eigenvalue we

found

k 1 2 3 4 5 6
1 1 1 1 1 1
0.7857 0.9337 0.9757 0.9918 0.9973 0.9991

(k)
* 0.7857 0.9337 0.9757 0.9918 0.9973 0.9991
0.6429 0.8619 0.9518 0.9837 0.9945 0.9982
Sk 12 14.417 14.751 14.919 14.93 14.991

It is easy to see spot that the eigenvector is (1,1,1,1)T and A\; = 15. Now considering

-9 4 4 1
4 -9 1 4
4 1 -9 4

1 4 4 -9

we use the power method again, with the same choice for ® and wv.

k 1 2 3 4 5 6 7
—0.1111 —0.1228 0.34383 —0.5324 0.67964 —0.7870 0.86132
2(8) —0.4444 0.5614 —0.6719 0.7662 —0.8398 0.8935 —0.9307
—0.4444 0.5614 —0.6719 0.762 —0.840 0.893 —0.931

1 -1 1 -1 1 -1 1
Sk -3 —12.667 —13.368 —14.031 —14.597 —15.039 —15.360

using Aitken’s acceleration we find that an estimate is —16, so that the smallest eigenvalue of

the original matrix is \y = —1.

48. Let A be a 3 x 3 matrix with eigenvalues {\;}. We assume that A has eigenvectors u, us, ug
which form a basis for R®. Note that A\ # A, say, as it is only an approximation. Thus

3 3
:;aiui, (2) z=(A—=X)"ly, = Z (A —\I)~ Zozz)\_)\

> i/ (A = N)’u; S e/ (= N
1= 21/[|z1]|lee, (4) 22 = L , = i
3) vy [zl (4) o On N (5) y S O]

Thus we can prove by induction that

Z?: az%ui A — A" u
1% 3, A1 — Al e lmy, = Y

5 aip el A

Yo =



where we have assumed that |A\; — A| < 1. Using two iterations of this method with y© =
(1,1,1)T

A =899 : \ A=4.01: \ A=—599:
k 2 k 1 2 k 1 2
33.1552 99.3377 —99.8999 99.9001 33.4557 —50.0165
2k 33.2889 99.3366 Zp 0.0002 0.0002 zp | —66.6444 100.0334
—33.5560 —99.3353 —100.1001 99.8999 —33.2555 50.0168
0.9881 1 —0.9980 1 0.5020 —0.5
Y 0.9920 1 Ys 0.0000 0 Y —1.0000 1
—1.0000 —1 —1.0000 1 —0.4990 0
49. The final eigenvector estimate in Qu. ?? was (—0.5774,1, —0.5774) thus the Rayleigh quotient

20.

ol.

1S

2 —1 0\ [/—05774 .
(—0.5774,1,—0.5774) | =2 2 -1 1 x ~ 3.732
o 1 2/ \o5mma)  1(=05774,1,-0.5774)[3

to 3 d.p. which is is a very good estimate of the largest eigenvalue obtained in Qu. 7?7

The Rayleigh quotient of the eigenvector (—2, 1, k)7 is

1 2 V2\ [-2
1 k* — 42k — 1
(-2,L,k)[ 2 3 o0 1] x = 2\/_ = \(k)
since we are told this is a minimum, it follows that X' (k) = 0, i.e.
12 4/2k* — 202
Bt A V2k 5 O\/_:(N:)k::\@mr—i
(k2 +5) V2

Noting that A(v/2)

—1and A\(—5/v/2) = —17/35 it follows that the eigenvector is (—2, 1,v/2)7.

Consider the problem
min,cg |[Au — pull3 =: F(p).

This will be minimized when F'(p) = 0. Thus

F(p) = [[Au — pull; = (u” AT —pu")(Au — pu) = u" A’u — 2pu’ Au + p*u’u
—A

— F(p) =0 <= p=u"Au/u"u



