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Matrices and linear equations

Elementary row operations used in Gaussian elimination
1. Add k times row ¢ to row j (notation: A;;(k));
2. Multiply row ¢ by k (notation: M;(k));
3. Switch rows ¢ and j (notation: P;;)

Matriz algebra For addition, subtraction and multiplication of matrices the
matrices must have a compatible size.

Matriz inverse The inverse of an n X n matrix, A, denoted A~! satisfies
A71A =1, = AA=! where I,, is the n X n identity matrix with 1’s along the
diagonal and 0’s everywhere else. To calculate A~!, create an augmented
matrix form by adding the identity matrix to the righthand side of the
matrix A and perform Gaussian elimination (see below) until you get I,, on
the lefthand side of the augmented matrix form.

Determinant The determinant of an n X n matrix A, denoted |A|, is a
number which determines whether A~! exists (JA| # 0) or not (|A| = 0).
In fact there is a formula for A~! in terms of the adjoint which is a matrix
consisting of determinant. It is easy to calculate but long winded.

Non-singular matrices

The following four equivalent properties characterise a non-singular
n X n matrix A:
(a) A has an inverse,
(b) the determinant of A is not zero,
(c) the linear system Ax = b has a unique solution for every column vector
b of n elements,
(d) the linear system Az = 0 has only the trivial solution = 0.

Gaussian elimination

Gaussian elimination without pivoting has the effect of expressing the
coefficient matrix as A = LU, where L and U are, respectively, lower and
upper triangular matrices; U is the coefficient matrix of the final triangular
system, and L has 1 in each diagonal position and the multipliers used
in the i-th stage of the elimination appear below the diagonal in the ¢-th
column. To solve several sets of equations with the same coefficient matrix
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A, but with different right-hand sides by, b, ..., we can calculate L and U

once and then solve Lc; = b; etc. by forward substitution, and Uz = ¢;
etc. by back substitution.

Ezamples (of Gaussian elimination)
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Partial pivoting

The LU decomposition described above is not always possible, even
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when A is non-singular. Partial pivoting is used to avoid failure of Gaussian
elimination through the occurrence of zero pivots. This also ensures that
the multipliers do not exceed 1 in magnitude, which helps to reduce the
effects of rounding errors. Gaussian elimination with partial pivoting has
the effect of expressing A as LU, where U is again upper triangular, but
now L is a permutation of a lower triangular matrix; this is always possible
for a non-singular matrix.

Row scaling

Any equation in a linear system may be multiplied by a constant with-
out affecting the solution, but the choice of pivots in Gaussian elimination
may be affected. Row scaling is recommended, i.e., multiplying the equa-
tions by suitable constants to arrange that the element of largest magnitude
in any row of the coefficient matrix is approximately 1

Ezamples (of finding the inverse of a matrix)
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The rule for calculating the determinant

Take any row (or column) and working from left to right (or top to
bottom) successively take each number and multiply it by the smaller de-
terminant you get by deleting the row and column (or column and row)
which contain the number. Finally take the alternating sum of the smaller
determinants using the appropriate signs from the following matrix

+ - +
__|__
+ - +

Elementary row operations can be performed on determinants with the
following change to |A| 1. no change; 2. |A| is multiplied by k; 3. |A] is
multiplied by —1. With the word “row” replaced by “column” all of the
previous properties hold.

Ezamples (of calculating the determinant of a matrix)

+ - +
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Hints and tips (for determinants)

Use Gaussian elimination to create well-placed zeros; If all but one
number in a row (or column) is zero, then expansion about that row (or
column) reduces the size of the problem by 1; If one row (or column) is a
multiple of another row (or column) then the determinant is 0; If the matrix
is completely 0 below (or above) the main diagonal, then |A| is the product
of the diagonal numbers.

Eigenvalues and eigenvectors

Eigenvalues and Figenvectors Let A be an n X n matrix, the eigenvalues of
A, {\i}, satisfy |[A — AI| = 0; the polynomial det(A — AI) is called the
characteristic polynomial of the matrix A. The corresponding eigenvectors,
{w'}™_;, may be found by finding the non-zero solution of (A — X\;I)w* =0
(the eigenvector should include an unknown b;). Geometrically eigenvectors
are special vectors which when pre-multiplied by A preserve their direction
and get scaled up/down in accordance with the eigenvalue.

Hints and Tips 1. If your eigenvector is zero (i.e. you don’t have a b; in
your answer) then you have either (a) not found the right eigenvalues or
(b) made an error in Gaussian elimination; 2. If A consists of real numbers
and {\, w} is an eigenvalues/eigenvectors then so is {\,w}; 3. Moreover, if
AT = A (symmetric) then all of the eigenvalues are real; 4. [A| = A1 -+ Ay;
5. A does not necessarily have n eigenvectors.

Theorem Let the eigenvectors of A be {w'}"_,, W = (w'---w") and let
the eigenvectors form a basis (|[W] # 0) then

1. The solution to £z = Az is 2(t) = eMlw! + .- + e*nlw™;

2. W~=1AW is a diagonal matrix with the eigenvalues on the diagonal.
Moreover, if A is symmetric or {\;}?_; are all different then the eigenvectors
form a basis.

Method for solving &z = Az, 2(0) = a

1. Find the eigenvalues of A, i.e. solve |[A — AI| = 0;

2. Find the eigenvectors corresponding to the eigenvalues;

3. z(t) = eMtw! + .- 4 eAntw?;

4. Set t = 0 and solve 2(0) = a for by,---,b, (b; is the unknown
coefficient in w?).
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The Cayley-Hamilton theorem states that every square matrix satisfies
its characteristic equation.

Iterative methods for linear equations

For large sparse systems of equations of the form Ax = b, iterative
methods are useful. Only the two simplest methods are mentioned here.
The matrix A may be written as D + L + U where D is diagonal, L is lower
triangular and U is upper triangular.

Jacobi’s method Dz = b — (L + U)z™.
The Gauss-Seidel method (D 4 L)x®+) = p — Uz®),
A convergence theorem

The Jacobi and Gauss-Seidel iterates converge to the solution of a set of
n linear equations in n unknowns if the n X n coefficient matrix is diagonally
dominant.

An example

1021 + z9 + 3 = 12
1 + 10z — 23 = 10
—x1 —x9 + 1023 =8
Jacobi’s method:
10,’1,'§k+1) — 19— Q’;gk) . ,’L'gk) m(o) m(l) m(Q) a‘;(3) m(4) m(5)
0 1.2 1.02 1.002 1.0002 1.00002

k+1) 1 (B, (R
10$gk+1) =10 x(lk)—I— Ta) 0 10 096 1.000 0.9996 1.00000
10z = 8+x; + 2y 0 0.8 1.02 0.998 1.0002 0.99998

Gauss-Seidel method:

1025 — 12— o) _ 5 ®) m(()O) ai(;) 151(3)(1212 0 :gs;:;)% 0 ;:;;)99
(k+1) 10 _ kD L (F) ' ' ' '
10z =10—z;" " +zy 0 0.88 0.99968 1.00012 1.000001

k+1 k+1 k+1
10$§ ) = 8+$§ )+«'E§ ) 0 1.008 1.00109 1.000004 0.999999
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Spline functions

A spline of first degree is a piecewise linear function and a quadratic spline
consists of a piecewise quadratic function which has a continuous first
derivative at the knots. A cubic spline is a piecewise cubic function which
has continuous first and second derivatives at the knots. An interpolating
spline takes prescribed values at the knots.

A cubic spline with knots zg, 1, ..., Z,, where a = zp < 1 < 29 <
- < xp = b, is a function S(z) having the following properties:

(i) on each subinterval I; = [z;,z41], for j = 0,1,...,n — 1, S(x) is a
cubic polynomial,

(ii) S(z) is twice continuously differentiable for a < = < b.

An interpolating cubic spline, agreeing with some given function f(z) at
the knots, also satisfies the interpolation conditions

(iii) S(z;) = f(z;) for 5 =0,1,...,n.

Let f; = f(z;), hj = zj41 — x; and k; = S’(x;) for the relevant values of
J; the derivatives k; at the knots have to be computed as part of the calcu-
lation. On the interval [z;, ;+1], the spline function is a cubic polynomial
which may be written as

Si(x) = fj + kij(z — z;) + ajo(z — ;)% + aj3(x — z;)°.
To satisfy the conditions S(z;) = f;, S(zj+1) = fi+1, S'(z;) = k; and
S,($j+1) = k‘j+1, we must have

3 fi41— f5) 2k + ki C2(f5 = fit1) kit ki
an = h2- — hj y CLj3 = h3 + h2- .
J J J

Continuity of the second derivative at the interior knots imposes n — 1
conditions, in the form of the equations

Bior o (11N ki 3 = fi) 30— fic)
2 ) kit = ! I JiY) g i =12, n—1.

J j—1

This is a set of n—1 equations (a tridiagonal system) for the n+1 derivative
values k;, for j = 0,1,...,n; consequently two of those values must be
specified in some other way.
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Possible end conditions are:

1. We provide numerical values for kg and k,; possibly ko = f'(zo) and
kn = f'(zn), if known.

2. The so-called “natural cubic spline” has S”(z¢) = 0 = §”(x,). That
requires

2ko + k1 = 3(f1 — fo)/ho and kn—1 4 2kn = 3(fn — fn=1)/hn.

3. The “not a knot” condition requires that the third derivative, S"(x), be
continuous at x; and x,_1, which means that the first and last interior
knots are not active. This is the method used by the MATLAB m-file
spline, called by choosing the spline option in interpl.

For evenly spaced knots, with the constant knot spacing A, the continuity
conditions simplify to

kj—l + 4]€J + kj_|_1 = 3(fj-|—1 - fj_l)/h, for ] = 1,2, ceay N — 1.

An example

Here we consider cubic spline approximation for sinz on the interval [0, 7],
with the knots zg = 0, z1 = 7/4, z2 = 7/2, 3 = 37/4 and z4 = 7. The
continuity equations are obtained by putting h = 7/4 in the equation just
above, and using fo =0, f1 = 1/V2, fo =1, fs =1/v/2 and f, = 0. They

are 12 12

ko +4k1 + ke = —(f2 — fo) = —,
T T
12

k14 4ko + k3 = ?(f?) — f1) =0,
12 12

ko +4ks + ks = —(fs — f2) = ——.
s s

If we take the end conditions kg = f'(z¢) = 1 and k4 = f'(z4) = —1, the
equations become

4]{31—|—k2:12/ﬂ'—1, k1—|—4k2+k3:0, k2—|—4k3:1—12/ﬂ'

From these we get ko = 0 and k1 = —k3 = 3/7 — 1/4 = 0.704930, correct
to 6 decimal places.

16
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On [0, 7/4] the spline function is
So(x) = fo + ko + ag2z” + agsz®,

3(fi—fo) 2kotk
h? h

both correct to six decimal places. Therefore

— —0005068, ap3 = —0155147,

with apg —

So(z) = = — 0.005068z> — 0.1551472°.

See §18.4 Kreyszig p. 952 for other worked examples.
Errors

As a particular case of Taylor’s theorem (the Mean Value Theorem), if a
number a is approximated by another number A — e.g., m approximated
by 3.14159 — the resulting change in the value of a differentiable function

fis
f(a) — f(A) = (a—A)f'(c), for some ¢ between a and A.

Ill-conditioned problems

A problem is said to be ill-conditioned if small changes in the data associated
with the problem can cause relatively large changes in the solution. A
condition number of a matrix A is a measure of the sensitivity of the solution
of a set of linear equations Ax = b to changes in the data, and consequently
to any rounding or other errors arising while solving the equations.

Loss of significance

This results from subtraction of numbers which are nearly equal and are
not known exactly. The error from this source may be reduced by rear-

rangement, e.g., v/a — vb = (a — b)/(y/a + v/b), or by expansion, e.g.,

2(1—cosz) —z* 1 N z? z?

rt 12 360 20160
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Infinite integrals and singular integrands

Integrals over infinite intervals may be approximated by specially designed
formulae, such as the Gauss-Laguerre formulae. Alternatively, we might
change the variable of integration so as to convert the integration interval to
a finite one, or else we could use one of the standard integration formulae on
a finite part of the interval and combine this with a bound on the remainder,
showing that its neglect is consistent with the desired accuracy. Newton-
Cotes methods can’t be applied directly to an integrand which is undefined
at an end-point of the interval, but a suitable change of variable may remove
the singularity, or we may be able to subtract off the singular part and
integrate it exactly.

Numerical differentiation

Some simple formulae for the first derivative, with their truncation errors,
are

f'(z) ~ ; truncation error — gf”(g), r<(<z+h

, truncation error 5]”"(0), r—h<f<zx

h) — —h h?
f(z) ~ flath) = fa ), truncation error — Ff”’(n), r—h<n<z+]

The third one is a second-order formula and the others are of first order.

Derivatives of higher order may similarly be approximated. For example
(see one of the problems)

f(z+h) = 2f(2) + f(&—h)

£(z) = K

Rounding errors cause difficulty in estimating derivatives numerically. The
formulae involve subtraction of function values which not known exactly and
which, for sufficiently small steplengths h, are nearly equal. It is therefore
important to avoid steplengths that are too small. Richardson extrapolation
can help in this respect.
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