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THEOREM. 0.1 (Taylor’s) Let f, f',---, f) be continuous on [a,b] and f™*+V) is contin-
uous on (a,b) then for all x € [a, b]

@) = (F(@) + fla)(e = a) + -+ [ (o) E58)") = =l A0t

where y is between a and x.

THEOREM. 0.2 Weierstrass approzimation. Given f € Cla,b] and € > 0 there ezists
n=n(e) €N and p, € P, := {polynomials of degree less than or equal to n} such that

|[f(z) —pn(z)|<e Vz€lab]

1 Chebyshev Polynomials

Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind on [—1,1] satisfy
To(z) :=cosnf  where § = cos™ z (1.1)
satisfies To(z) = 1, T1(z) = z and the following three term recurrence relation
Toi1(z) = 22T (z) — Toei(z) n=1,2,---
from which it follows that T,(z) =2"!a" +--- for n = 1,2, -+ and |Tn(z)|<1.

Note that at the points z; = cos Aﬁﬁv we have T,,(z;) = 0 and at y; = cos(imw/n),

between consecutive z;’s, Tn,(y:) = (—1)%.

n—1

THEOREM. 1.1 Let w,(z) = [1iy (z — z;) € Pn. Among all possible choices for distinct
x;, max |w,(z)| is minimised if w,(z) = 2T, (z).

PROOF. Firstly note that w,(z) = 2'~"T,(x) € P, is a monic polynomial with distinct
roots. Also wn(y;) =2'7"(—1)},0 < i < n, where y; = cos(in/(n + 1)).

Now assume that there is another polynomial v,(z) € P,, with leading coefficient 1
such that max |v,(z)| < max |w,(z)|. Then, in particular, if ¢ is even v,(y;) < wn(y;) and
if 7 is odd v,(y;) > wy(y;). This implies that p,_1(z) = v,(z) — w,(z) € P,_1 changes
sign n times and therefore has n roots. But p,_1(z) € P,_; and therefore p,_;(z) = 0. O

We can replace the interval [—1,1] by [a,b] and Chebyshev polynomial of degree n
becomes T, (Z=(atb)y,

b—a
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Chebyshev Economization of power series

The Taylor series of f about a =0 is
flz) ~ 3" dja?
=0

where d; = fU9(0). Similar to a Fourier expansion, for z € [~1,1] consider writing a
continuous function f as a Chebyshev series

f(z) = ico +MUH$.5AHV s}mSSH W,\“ F,\@IJ‘%MVQ&.

Unfortunately in all but the simplest of cases it is difficult to calculate this integral. One
way to approximate f(z) by a polynomial of degree n is to “chop” the Chebyshev series

oo

£@) - (b + S e6T@) | = 3 6T@) ~ cunTun(@)

j=n+1

m.%mooenmamnﬂm&Qmongmmami&%?oaumE@:m:.‘EEm“mmémgémmmz“;moioa
is as small as possible and uniformly spread across [—1, 1], unlike the Taylor polynomial.

Chebyshev economization Given an interval [a, b] and a function f(z). Compute the Taylor
polynomial of degree n, p,, about a = 0 and bound the remainder term in Taylor’s theo-
rem. Now compute g;_1(z) = ¢j(z) — a;Tj(z) where g,(z) = pn(z), T; is the appropriate
Chebyshev polynomial for the interval [a, ] and «; is chosen so that ¢;_1 € P;_;.

The Chebyshev polynomials of the second kind satisfy

_sin((n+1)6)
N sin 6

Un() : where 6 = cos™' z, (1.2)

Uo(z) =1, Ui(z) = 2z and the following three term recurrence relation

Upt1(z) = 22U,(z) — U,i(z) n=1,2,---

2 Polynomial Interpolation

When presented with n+1 data points (z;, f(z;)) (i = 0,1,---,n) a scientist may want to
draw a curve through these points so that information might be obtained at intermediate
values. Polynomial Interpolation is the process of finding a polynomial passing through
these points namely

EASL”.\.AHL mOHN.”OQHq...,E:

Interpolation tells us something about intermediate values, eztrapolation tells us about
values beyond what we have.
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ExamPLE. Let (z;, f(z;)) (2 = 0,1,2) be three points (n = 2) with distinct z;’s. Is there
a unique interpolating polynomial of degree at most two

pa(z) = ag + a1z + asz”?
(Three points to fit and three unknown coefficients.)

Solve ag + arz; + asx? = f(z;) (i = 0,1,2). Writing as a matrix equation

1z 25\ [ao f(z0)
1 z; 22 ar | = | f(z)
1 z, 72 as f(za)
—_———————— ————
X a f

we know that a will exist and be unique if X is invertible, i.e. det X # 0. However,
det X = (zo — z1)(@o — 22)(z2 — 71) # 0, as the nodes are distinct. a

THEOREM. 2.1 Let f be a continuous function on [a,b] and let zo,z1,- -, T, be distinct
nodes lying in [a,b]. Then there ezists a unique polynomial p, € P,, which interpolates f

ProoF. Existence is proved by construction. Define the Lagrange polynomials of degree
n by

by = EE) e ) ) @) e
(2 — o)+ (& — 1) (T — Tjs1) (&5 — Tn) o @5 — T
and observe that [;(z;) = &;;. Now the interpolating Lagrange polynomial of degree at

most 7, pn, is defined to be

E:AHV =

e

I
o

flaslb(e) sothat pa(e) = 3 flali(@) = fla) i =0,1,:,m.

J

To prove uniqueness we use proof by contradiction. Suppose that p, # g, are both
interpolating polynomials of degree at most n, i.e. p,(z;) = gn(2:) = f(z;) (1 =0,1,---n).
Let 7n(z) := pn(x) — gn(z) € Pn. Notice that

ﬂ.:AHmv ”E:AHL \Q:AHL = O, { ”ouuq...uﬁj

i.e. T, has at least n + 1 real zeros, but it can have at most n! ]

Notice we can rewrite

S:JSAHV
li(z) = ———=—F——— where wn.(z):
@ (T = i) whya (22) +(@) 7=0

Il
=
—

B

\

8
<
)

4 J.F. Blowey

THEOREM. 2.2 (The truncation error theorem) Let f,f,---, f*t1) be continuous on
la,b] and let p, € P, interpolate f at the distinct points xo,x1, "+, Tn in [a,b]. De-
fine Wny1 = (x —xo)(x — 1) -+ (x — @,). For each x € [a,b] there is a point £ € (a,b)
such that

S:JSAN.V

f(@) = palz) = ax?txmv.

PROOF. If z = z; (i =0,---,n) then
f(@) =pa(z) =0 and  wpia(z) =0,
and the theorem is trivial. So assume that z # z; is given (fixed). Define g to be

S«J&QV
8=+HAHV

g9(t) = f(t) —pa(t) - (F(z) = pn()),

which is n + 1 times continuously differentiable on [a, b]. Notice that wy,11(z) # 0 so g is
well-defined. Then g(z) =0 and g(z;) =0,¢=0,1,---,n. That is, g has n + 2 distinct
zeros in [a,b]. So from Rolle’s theorem ¢’ has n + 1 distinct zeros in (a,b). Repeated
application of Rolle’s theorem gives g("t1)(¢) = 0 for some ¢ € (a,b). The result now
follows from
!
ou%tél;;a‘ESHT?E.E

S:+HAHV

Interpolation at Chebyshev nodes

It should be noted that truncation error theorem doesn’t guarantee convergence of the
interpolant as n — oo. A simple example (f(z) = 1/(1+25z%) with equally spaced nodes)
can be used to show that we don’t necessarily get a better approximation by putting in
more points. (The essence of the problems is that, even though f(z) is infinitely contin-
uous the maximum values of the derivatives grows rapidly as we take higher derivatives).
If we examine the error estimate

(nt1)
f(@) — ple) = igié € (a,).

we see that we have little control over the f™*1)(¢)/(n 4 1)! term. However we can try
to choose the interpolation points to minimise the maximum value of wy,11(z) which is
done by choosing the z;’s to be the zero’s of T,,41(z), i.e. z; = cos Aﬁv so that from
before

S+ ()]

@) = 2@)1< (o
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Hermite Interpolation

If we ask to produce a polynomial interpolant which at distinct nodes {z;}7_, fits heights
{y:}7, and slopes {y:}? , we produce the Hermite interpolant.

THEOREM. 2.3 The Hermite interpolation polynomial pani1(x) = T:Aav?. + y?&& €

'~

N
Il
=}

Pont1 where
hi(z) == (z — 2:)l}(z), hi(z) = [1 = 2(z — z:)lj(z:)] ()

is the only polynomial with the properties pany1(2:) = yi and phyy1(x:) = yi fori =0 — n.

PRrROOF. Existence is automatic since

hi(z;) = b5, hi(z;) =0, ha(z;) = 0 and hy(z;) = bi;.

Let p(z), g(z) € Pany1 satisfy the interpolation conditions, then p(z) — ¢(z) € Pany1 and
p(z;) — q(z;) = 0, p'(z;) — ¢'(z;) = 0. Thus p(z) — ¢(z) is an 2n + 1 degree polynomial
with 2n + 2 roots. Therefore by the fundamental theorem of algebra p(z) — ¢(z) = 0.

THEOREM. 2.4 (Truncation Error) Let f, f', -+, f2"+2) be continuous on [a,b] and pany1
be the interpolating Hermite polynomial at the distinct nodes z; (i = 0 — n). Then for
all z € [a,b]

B@) = ) poss(a) = O emag ce@n  (29)

PrOOF. The theorem is plainly true at the interpolation points. Fix z # z; and define

f(z) — panyar(z)

(e O

9(t) = f(t) — Panr(t) —
then g(¢) has at least n + 1 double roots in [a,d] and g(z) = 0. Hence g(¢) has at least
n + 2 roots ((n + 1) of which are double) in [a,b]. One application of Rollé¢’s theorem
gives that ¢'(¢) has n+1 roots in the open intervals defined by the roots of g(¢), therefore
(from the double roots) ¢’(¢) has at least 2n + 2 distinct roots in [a,b]. Now repeated
application of Rollé’s theorem gives that g"*2) has at least one root in ¢ € (a,b) where

J(z) — pany1 ()

0= g@ ) (g) = fm2(g) — [Wni1 ()2

(2n +2)!
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Piecewise linear interpolation

The continuous, piecewise linear function, p;, interpolating f at zop < 1 < --- < @, i
defined by
Tip1— T T — T .
pi(z) = 52— f(z;) + —f(zjn1) T € [2zi] (1=0—n—1).

BRI Tj+1 = T
Notice that if f, f', f” are all continuous on [a, b], then from linear interpolation for z €
Tua.u Hs.+HT

@) - p@)<E 2Ly

where |f”(z)|<M for all z € [a, b]. Hence for all z € [a,b]

2
|f(z) — FA&:MWE where h = MAX Tip1 = Ti.

3 Continuous least-squares approximation

In this section we try and make the error in approximation as small as possible, for
instance for a given n minimize

2

b n )
B(do,++,dn) = [ fl@) = S djo? | da
a NHO

(note we could use another measure for the error, see §1, we have just decided to use the
integral), we need to solve for k =0 — n

_oE _ SNl ) gt
0= 54 = m\n f(z) Q.Mnm_&a o de

k=0: sodo +s1d; + - +8ndn = pPo
k=1: sidy +sedi  +++ +Snp1dn =p1

k=n: spdy +Snt1di +--- +Smdn = pn

where s, = [°z*dz and p = [ #* f(x)dz, a tricky set of n+1 simultaneous ill-conditioned
equations. If it were the case that for j # k that

\.a \AHVIM:U&% zhde
a =0

then we would be left with an explicit expression for d.. We spend some time developing
the idea of orthogonal polynomials to make the algebra easy.
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Orthogonal polynomials

Civen w(z)30 for all z € (a,b), continuous and [°w(z)dz > 0, Le. w(z) £ 0. We can
define an inner-product

(f.9) = [ w(@)f@gle)dz and If] =4 )",

Obviously the inner-product satisfies the following three key relations

1. [IfI>0 and || f]| = 0 iff f = 0;
2. (af +Bg,h) = a(f, h) + B(g,h);
3. (f,9)= (g, )

This is actually the definition of an inner-product.

The sequence {¢,} is an orthogonal polynomial sequence if ¢,(z) is a polynomial of
degree n and (¢n, ¢m) = 0 for n # m.

THEOREM. 3.1 (Gram-Schmidt) Every inner-product, as defined above, has a monic or-
thogonal polynomial sequence. Moreover, {¢,} satisfies the three term recurrence relation

¢n(z) = (T + An-1)Pn-1(2) + Buc1$n-2(z) n>2
where p—1,b,—1 € R.

PRrOOF. Let ¢o(z) = 1. Let ¢1(z) = & + a1,000(z) € P1 where a1 9 = —(z, ¢o) so that
(¢1,¢0) = (7, $0) + a1,0(¢0 o) = 0.

We now use mathematical induction. Let n>2 Suppose that ¢g(z),

-+, ¢n_1(x) satisfy
é; € P and (¢, ;) = 0 if i # j. Let

Pn(2) = TPn-1(z) + Ann-19n-1(2) + - + anoo(z) € Pn
where we choose a,,; j = 0 — n — 1 so that (¢, ¢;) = 0, that is

0 j=0-n-3
RCET T A

ExAMPLES.
nial name w(z) Interval Recurrence relation n=0,1
1ev 1=z [=1,1] Thp(a) = 22T (z) — T_y(x) To(z) =1, Th(z) ==
e 1 [-1,1]  Puoyi(z) = ﬁgﬁzﬁﬁv — i Paa(z) Pol(z)=1, P(z)=2
e e 0,00)  Lnyi(z) = EH2L, (0) — 2oL i(2) Lo(z) =1, Li(z)=1—2z
: e® (—00,00) Hpii(z) = 2zH,(z) — 2nH,_(z) Ho(z) =1, Hi(z) =2z
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Continuous least-squares

Taking the usual inner-product, let {¢,} be the orthogonal monic polynomial sequence.
For a given n we minimize
b n 2
Bleo, ) = [ w(@) [ f@) - X c04(a) | do
a =0
That is we want to solve
OFE b m
0 = 5= ==2[ @) (/@)= X ees(@) | dule)da
Ck a i=0

— S2f = Y5 80) = —2f — cude, de) = = %
=0 ,

Analogous theory holds where one works with a discrete inner-product, e.g. given
distinct z; and w; > 0 define

(f,9) = MER@LQAHL.

where f and g are polynomials of degree n.

4 Numerical Integration
Introduction

It is easy to write down an integral where we cannot write down the answer in a closed

form, for example
T 2 lsinz
.\ e s&on.\ —dz,
0 o T

or the integrand may be complicated to write down. To find the value of the integral we
may have to resort to Numerical Integration.

Let f be a continuous function and z; (z = 0 — n) be interpolation points. Then
integrating the Lagrange interpolation polynomial over the interval [a, 8] yields the (n+1)
point interpolation formula which is exact for polynomials of degree < n

\JE& ~3 Hif(zs) where H, = \,i%a — 11 57 % da
a s”O a

a g ZT; — Hu.
i#i

If f,f,-+,f"*) are continuous on [a,b] then using the Lagrange interpolation error

formula , " , (@)
- Wnt1\T) p(nt1
[ e =3 fagta) = [ CES (e



