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14. Using the analogy with the classical mechanics of a point particle moving in one spatial

15.

dimension, determine the qualitative behaviour of travelling wave solutions of the KdV
equation on a circle, for which the integration constants A and B are non-zero.

This exercise involves the infinite chain of identical coupled pendulums of section 3.3,
whose equations of motion reduce to the sine-Gordon equation in the continuum limit
a — 0. We will simplify expression by setting g = L = % = 1. Let 0,,(t) be the angle
to the vertical of the n-th pendulum (n € Z), which is hung at the position x = na along
the chain, at time ¢. The configuration of the system at time ¢ is then specified by the
collection of angles {0,,(t) },ez.

(a) Starting from the force (note: m is a dummy variable)
. 1 1
Fn({em}) = —asi en + a(en—&-l - en) + a(en—l - en)

acting on the n-th pendulum, deduce the potential energy

“+o00

V) = > ()
such that F}, = —(%L for all n € Z, and fix the integration constant by requiring

that the potential energy be zero when all pendulums point down: V' ({0}) = 0.

(b) Show that in the continuum limit @ — 0, the potential energy computed above

becomes .
V= / dx {(1 —cos ) + %95} :

o0

and the kinetic energy

T({0)) = Z A

n=-—oo

+oo
T:/ dx 9?,

—00

becomes

where the function 0(x, t) is the continuum limit of {6,,(¢) } ,ez.

+o00
. L . . “+oo
[Hint: in the continuum limit, @ Y, — [~ > dz.]

n=—oo
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16. A field u(x,t) has kinetic energy 7" and potential energy V', where

17.

+00 1
T:/ dz §uf,

+o00 1 A
V:/_ dx [§ui+§(u2—a2)2 :

o

and a and A > 0 are (real) constants. (This is a version of the ‘¢*’ theory, so named
because the scalar potential is quartic, and the field w is usually called ¢.) The equation
of motion for u is

Uy — Uy + 2 u(u? — a?) = 0.

(a) If u is to have finite energy, what boundary conditions must be imposed on u, u,
and u; at v = +00?

(b) Find the general travelling-wave solutions to the equation of motion, consistent
with the boundary conditions found in part (a). Compute the total energy £ =
T + V for these solutions. For which velocity do the solutions have the lowest
energy?

(c) One of the possible boundary conditions for part (a) implies that v is a kink, with
[u(2)]2=*% = 2a. Use the Bogomol’'nyi argument to show that the total energy
E = T+V of that configuration is bounded from below by Cv/Aa®, where C is
a constant that you should determine, and find the solution v which saturates this

bound. Verify that this solution agrees with the lowest-energy solution of part (b).

(a) Explain why the Bogomol’'nyi argument given in the lectures fails to provide a
useful bound on the energy of a two-kink solution of the sine-Gordon equation (a
two-kink solution is one with topological charge n — m equal to 2). What is the
most that can be said about the energy of a k-kink?

(b) For a sine-Gordon field u, generalise the Bogomol’nyi argument to show that

oo 1 u1B
/Adx [§uf+§ui+(1—cosu)] 2:&4[0085}14

(c) * Use this result and the intermediate value theorem (look it up if necessary!) to
show that if the field « has the boundary conditions of a k-kink, then its energy is
at least k times that of a single kink. Can this bound be saturated?
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18.

19.

20.

A system on the finite interval —7 /2 < x < /2 is defined by the following expressions
for the kinetic energy 7" and the potential energy V:

w/2 1 /2 1
T:/ d:c§ut2, vz/ dx§(ui+1—u2).

—7/2 —7/2

The function u(x,t) satisfies the boundary condition |u(+m/2,¢)| = 1 and is required
to satisfy |u(z,t)] < 1 everywhere. Show that with “kink” boundary conditions, the
total energy F is bounded below by a positive constant, and find a solution for which the
bound is saturated.

Check explicitly that the energy

+oo 1 ) 1 )

and the momentum
+o0
P=- / dz Uiy,

o0

of a relativistic field u(z,t) in 1 space and 1 time dimensions are conserved when the
equation of motion
U — Ugpp = — V' (u)

and the boundary conditions

gy Uy, V(u), Vi(u) — 0Vt

r—Fo0

are satisfied.

(a) Compute the conserved topological charge, energy and momentum of a sine-Gordon
kink moving with velocity v, and check that the results do not depend on time.
[Hint: The integral sheet might be useful. For the scalar potential term in the en-
ergy, write 1 — cos(u) = 2sin?(u/2), plug in the kink solution and manipulate the
result to get something involving cosh™2.]

Confirm that for |v| < 1 the energy and the momentum take the forms

1
E:M—|—§Mv2—|—(9(v4), P = Mv+ O(v*)

where the ‘mass’ M is the energy of the static kink, which appears in the Bogo-
mol’nyi bound.

(b) * If you are fearless and have time on your hands, try also to compute the conserved
spin 3 charge
+o0 1
Q3 = / dx [uiJr - Zui —H/icosu
for the sine-Gordon kink. The integrals are not at all straightforward, but can be
evaluated using appropriate changes of variables. (Did I write fearless?)
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21. Find three conserved charges for the mKdV equation of problem 13 (a), which involve
u, u? and u* respectively. The boundary conditions on u(z,t) are u, u, and u,, — 0
as |z| — oo. Evaluate these quantities for the travelling-wave solution found in that
problem. The definite integrals on the integrals sheet might help.

22. Show that u is a conserved density for Burgers’ equation from problem 13 (e). Why is
this result of no use in analysing the travelling wave solution of that problem?

23. Consider the KdV equation u; + 6uu, + t,,, = 0 for the field u(z, t).

(a) Show that p; = u, py = u? and Px = TU — 3tu? are all conserved densities, so that

+o0 +o0 +o0
le/ dr u , sz/ dx u? Q*:/ dz (ru — 3tu?)

—0o0 [oe] o0

are all conserved charges.

(b) Evaluate the conserved charges ()1, ()2 and (). for the one-soliton solution centred
at 9 and moving with velocity v = 42

Uy, 2o (@, 1) = 2p1” sech® [pu(x — wo — 4p°t)]

(¢) According to the KdV equation, the initial condition u(z, 0) = 6 sech®(z) is known
to evolve into the sum of two well-separated solitons with different velocities v; =
4p2 and vy = 4p2 at late times. Use the conservation of Q1 and (), to determine v,
and vs.

(d) A two-soliton solution separates as ¢ — —oo into two one-solitons u,, ,, and
Upy, zy- AS T — +00, two one-solitons are again found, with /1, and j, unchanged
but with x1, x5 replaced by v, y». Use the conservation of (), to find a formula
relating the phase shifts y; — x1 and y — x5 of the two solitons.
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24. (a) Show that if u(x,t) satisfies the KdV equation u; + 6uu, + Uz = 0, and u =
A — v? — v, where \ is a constant and v(, t) some other function, then v satisfies

(20 + %) (v + 6V, — 60°0, + Vyy) = 0.

(b) Compute the Gardner transform expansion

up to order £*. Use the results to find the conserved charges @3 and @4, where

Qn:/ dx w,, .

o0

Show that @3 is the integral of a total x-derivative (and hence is zero), while @4 =

a (Y3, where
+oo 1
Q3 = / dz <U3 - 511;2)

oo

is the third KdV conserved charge (the ‘energy’) and « a constant that you should
determine. * If you’re feeling energetic, try to compute ()5 and ()¢ as well.

25. This question is also about the KdV equation u; + 6uu, + tyz,, = 0.

(a) Evaluate the first three KdV conserved charges

+oo +oo +oo 1
le/ dz QQ:/ dz u? ng/ dx(u3—§u§)

o —0o0 o0

for the initial state u(x,0) = A sech?( Bx), where A and B are constants.

(b) The initial state
u(z,0) = N(N + 1) sech?(z) ,

where N is an integer, is known to evolve at late times into /N well-separated soli-
tons, with velocities 4k2, k = 1... N. So for t — o0, this solution approaches
the sum of /V single well-separated solitons

N
(e, 1) 37 2 sech? [y — v — 4430)]
k=1
where (i1, ..., uy are N different constants. Since ()1, ()2 and ()3 are conserved,

their values at t = 0 and ¢ — 400 must be equal. Use this fact to deduce formulae
for the sums of the first N integers, the first /N cubes, and the first V fifth powers.

(c) * Use Q4 and )5 and the method just described to find the sum of the first N
seventh and ninth powers, % k7 and S0 | k9.



