
Chapter 3

Travelling waves

The main references for this chapter are §2.1-2.2 of Drazin and Johnson (1989) and §2.1 of
Dauxois and Peyrard (2006).

A “TRAVELLINGWAVE” is a solution of a wave equation of the form

upx, tq “ fpx ´ vtq ,

where f is a function of a single variable, which we will typically denote by ω :“ x ´ vt. The
velocity v of the travelling wave could either be:

1. Fixed in terms of a parameter appearing in the wave equation, as in d’Alembert’s
general solution

upx, tq “ fpx ´ vtq ` gpx ` vtq
of the wave equation

1

v2
utt ´ uxx “ 0 ,

which is the linear superposition of two travelling waves with velocities ˘v.

2. A free parameter of the solution, as in the KdV soliton that we will derive shortly.

REMARK:
In some cases (e.g. “the” wave equation or the sine-Gordon equation) there will be both a
velocity parameter appearing in the equation (e.g. the speed of light) and a di!erent velocity
parameter appearing in the travelling wave solution (namely, the speed of the wave). To avoid
confusion, from now on the velocity parameter appearing in the wave equation will be set to

20
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1 by an appropriate choice of units, and v will be reserved for the velocity of the travelling
wave. For example, we will write “the” wave equation as utt ´ uxx “ 0 and d’Alembert’s
general solution as upx, tq “ fpx´ tq ` gpx` tq, which is the superposition of two travelling
waves with velocities v “ ˘1.

3.1 The KdV soliton
We would like to "nd a travelling wave solution of the KdV equation

ut ` 6uux ` uxxx “ 0

with boundary conditions (BCs)

BCs : u, ux, uxx !!!!Ñ
xÑ˘8

0

for all "nite values of t.

Substituting the travelling wave ansatz upx, tq “ fpx ´ vtq ” fpωq into the KdV equation,
where ω “ x ´ vt, using the chain rule to express partial derivatives wrt x and t in terms of
ordinary derivatives wrt ω as follows,

B
Bx “ Bω

Bx
d

dω
“ d

dω
,

B
Bt “ Bω

Bt
d

dω
“ ´v

d

dω
,

and using primes to denote derivatives wrt ω, we obtain an ODEwhich we can integrate twice:

´vf 1 ` 6ff 1 ` f3 “ 0

ùñ!
dω

´vf ` 3f 2 ` f 2 “ A

ùñ!
dω f 1

´v

2
f 2 ` f 3 ` 1

2
pf 1q2 “ Af ` B ,

where A and B are integration constants. The second integration used an integrating factor
f 1, as denoted by the short-hand

!
dωf 1.

We can determine the integration constants A and B by imposing the BCs, which imply that
f, f 1, f 2 Ñ 0 as ω Ñ ˘8. Sending ω Ñ ˘8 in the second and third line above we "nd1

BCs: A “ B “ 0

ùñ pf 1q2 “ f 2pv ´ 2fq
ùñ f 1 “ ˘f

a
v ´ 2f

ùñ
"

df

f
?
v ´ 2f

“ ˘ω ” ˘px ´ vtq . (˚)

1↭! Always impose the boundary conditions carefully and keep in mind that they don’t always imply
that the integration constants vanish. This is a major source of mistakes in homework and exams.
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where we note that we need f " v{2 to ensure that f, f 1 P R.

To calculate the integral obtained by separation of variables, we change integration variable

f “ v

2
sech2ε (˚˚)

ùñ df “ ´v
sinhε

cosh3 ε
dε ,

a
v ´ 2f “ ?

v

c
1 ´ 1

cosh2 ε
“ ˘?

v
sinhε

coshε

ùñ df

f
?
v ´ 2f

“ ¯ v sinhε
cosh3 ε

dε
v
2

1
cosh2 ε

?
v sinhε
coshε

“ ¯ 2?
v
dε . (˚ ˚ ˚)

Substituting (˚ ˚ ˚) in (˚) and keeping in mind that the sign ambiguities arising from taking
square roots in the two equations are unrelated (and therefore only the relative sign ambiguity
matters), we "nd

´ 2?
v

"
dε “ ˘px ´ vtq

ùñ ε “ ˘
?
v

2
px ´ x0 ´ vtq ,

where x0 is an integration constant. Substituting in (˚˚) we "nd the travelling wave solution

upx, tq “ fpx ´ vtq “ v

2
sech2

„?
v

2
px ´ x0 ´ vtq

#
(3.1)

where the sign ambiguity has disappeared because sech2 is an even function.

The travelling wave solution (3.1) of the KdV equation is the KdV SOLITON. See 3.1 for a
snapshot of the KdV soliton.

REMARKS:

• For a real non-singular solution we need v # 0, which means that KdV solitons only
travel to the right.2

2For v ! 0 the travelling wave solution just found is

´|v|
2

sec2
«a

|v|
2

px ´ x0 ` |v|tq
$

,

which moves to the left with speed |v|. However it diverges wherever r. . . s “
`
n ` 1

2

˘
ω with n P Z. We are

always after real bounded solutions, so we discard this singular (or divergent) solution; it also fails to satisfy the
given boundary conditions.
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Figure 3.1: Snapshot of the KdV soliton.

• PROPERTIES of the KdV soliton:

VELOCITY v

HEIGHT v{2
WIDTH „ 1?

v

CENTRE x0 ` vt

Clari!cation:

What do I mean by WIDTH „ 1{?
v? A possible de"nition of the width of the soliton is as

the distance between the two points where the value of u is reduced by a factor of e from its
maximum, that is WIDTH “ |x` ´ x´| ” 2!x where upx˘q “ v{p2eq. For ?

v!x " 1, we
can approximate sech2

´?
v
2 !x

¯
« 4e´?

v!x, therefore this de"nition of width would give

WIDTH “ 2!x « 2?
v

p1 ` log 4q « 4.77?
v

.

(Without the approximation one "nds 4.34...{?
v.) However the above de"nition of width

was somewhat arbitrary: for instance we could have looked at points where the value u is
reduced by a factor of 2, or 3, or else, from its maximum. Given a precise de"nition of width,
one can determine the precise coe#cient of 1{?

v above, but "xating on a precise de"nition
would be somewhat absurd given the arbitrariness in the de"nition. It is better to say that
“the width is of the order of” (or equivalently “goes like”) 1{?

v. This is independent of
the precise de"nition of width and captures the essential point that the spatial coordinate x
appears multiplied by

?
v in the KdV soliton solution (3.1). We use „ to denote this paramet-

ric dependence. This is not to be confused with «, which means “is approximately equal
to”.
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A "nal comment: if the BCs are changed to allow A,B ‰ 0 (e.g. if we impose periodic bound-
ary conditions, which is equivalent to solving the KdV equation on a circle), then the ODE for
the travelling wave solution can still be integrated exactly using elliptic functions. See §2.4,
2.5 of Drazin and Johnson (1989) if you are interested.

3.2 The sine-Gordon kink
Let us seek a travelling wave solution the sine-Gordon equation

uxx ´ utt “ sinu ,

where u is an angular variable u de"ned modulo 2ϑ, subject to the boundary conditions

BCs : u mod 2ϑ, ux !!!!Ñ
xÑ˘8

0

for every "nite t. (More about these BCs later.)

Substituting the travelling wave ansatz upx, tq “ fpx ´ vtq ” fpωq in the sine-Gordon equa-
tion, we "nd

p1 ´ v2qf 2 “ sin f

$ñ f 2 “ ϖ2 sin f , where ϖ :“ 1?
1 ´ v2

ùñ!
dω f 1

1

2
pf 1q2 “ A ´ ϖ2 cos f

BCs: A “ ϖ2

ùñ f 1 “ ˘
?
2ϖ

a
1 ´ cos f “ ˘2ϖ sin

f

2

ùñ
"

df

2 sin f
2

“ ˘ϖpx ´ x0 ´ vtq

ùñ log tan
f

4
“ ˘ϖpx ´ x0 ´ vtq

where x0 is an undetermined integration constant.

We "nd therefore the following travelling wave solution of the sine-Gordon equation

upx, tq “ fpx ´ vtq “ 4 arctan
`
e˘ϑpx´x0´vtq˘ , (3.2)

which goes by the name of “KINK” (` sign) or “ANTI-KINK” (´ sign).

Note that the BC required that as ω Ñ ˘8
fpωq Ñ 2ϑn˘ , f 1pωq Ñ 0 pñ f 2pωq Ñ 0q ,
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where the two integers n˘ P Z can be di!erent. Indeed they are di!erent for a kink (/antikink)
solution. Choosing the branch of the arctan such that

arctanp0˘q “ 0˘ , arctanp˘8q “ ˘
´ϑ

2

¯¯
,

we "nd that the kink and the anti-kink solution look as in "g. 3.2 at a "xed time t:

a) Kink b) Anti-kink

Figure 3.2: Snapshots of the sine-Gordon kink and anti-kink.

REMARKS:

1. Choosing a di!erent branch of the arctan3 shifts the whole solution upx, tq by a multiple
of 2ϑ. This is inconsequential. What matters is:

up`8, tq ´ up´8, tq “ `2ϑ KINK
up`8, tq ´ up´8, tq “ ´2ϑ ANTI-KINK

2. The velocity of the kink/anti-kink could be

v % 0 : RIGHT-MOVING
v “ 0 : STATIC
v & 0 : LEFT-MOVING

3. For a real solution we need

ϖ2 # 0 ùñ |v| " 1 “ speed of light

4. The kink/antikink is a localised lump centred at x0 ` vt and with

WIDTH „ 1

ϖ
“

?
1 ´ v2 .

3alongwith reversing the sign and adjusting the integration constant if themultiple is odd. Check for yourself.



CHAPTER 3. TRAVELLING WAVES 26

So faster kinks/antikinks are narrower. This phenomenon is known as “Lorentz con-
traction” and is a feature of special relativity. ϖ is called the “Lorentz factor”.

NOTE: It might be confusing to state that the kink/antikink is localised, when u interpo-
lates between di!erent values as x Ñ ˘8. The key point is that u is an angular variable
which is only de"ned modulo addition of 2ϑ. To de"ne the width it is better to look at
single-valued objects like eiu or Bxu, which do not su!er from the above ambiguity. This
point will become more concrete later when we calculate the energy density of the kink,
which is a single-valued and everywhere positive function, which achieves a maximum
at the centre of the kink and approaches zero far away from the centre, see "gure 4.2.

3.3 A mechanical model for the sine-Gordon equation
Consider a chain of in"nitely many identical pendulums hanging from a straight wire which
cannot be stretched but can be twisted. Each identical pendulum consists of a massless4 rod
of length L, with a weight of mass M at the end of the rod. The pivot of the n-th pendulum
at position na along the line, where n P Z and a is the separation, and the con"guration of
the n-th pendulum at time t is encoded by ϱnptq, the angle between the pendulum and the
downward pointing vertical at time t. See "gure 3.3.

Figure 3.3: Section of an in"nite chain of pendulums separated by distance a.

The pendulums are subject to two kinds of forces: a gravitational force due to the attraction
between the Earth and the weights, which favours downward pointing pendulums; and a
twisting force between neighbouring pendulums due to the wire, which favours a straight
untwisted wire and therefore the alignment of neighbouring pendulums.5 The equations of

4This assumption can be easily relaxed, leading to no qualitative di!erence in what follows.
5This is a slight lie. If you have studied rigid bodies you will recognise that these are “torques” rather than

forces. The equation of motion (3.3) is not the standard Newton’s law F “ ma, but rather its rotational analogue,
which states that the total torque equals the product of the moment of inertia and the angular acceleration.
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motion (the analogue of Newton’s equation F “ ma) for this physical system are a coupled
system of in"nitely many ODE’s labelled by the integer n, one for each pendulum, which take
the form

ML2:ϱnptq “ ´MgL ¨ sin ϱnptqlooooooooomooooooooon
net gravitational force

` k

a

´
ϱn`1ptq ´ ϱnptq

¯
` k

a

´
ϱn´1ptq ´ ϱnptq

¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
twisting forces exerted by neighbouring pendulums

, n P Z (3.3)

where a dot denotes a time derivative, g is the gravitational acceleration and k is an elastic
constant that parametrizes the strength of the twisting force.

Now we are going to take the so called “continuum limit” of this in"nite-dimensional dis-
crete system, inwhich the separation between consecutive pendulums becomes in"nitesimally
small and the average mass density (i.e. the mass per unit length) along the line is kept "xed:

a Ñ 0 , m “ M{a "xed .

In the continuum limit, the position x “ na of the n-th pendulum along the line e!ectively
becomes a continuous real variable, which replaces the discrete index n P Z. Identifying
ϱnptq ” ϱpx “ na, tq, the collection tϱnptqunPZ of angular coordinates of the in"nitely many
pendulums at time t is replaced in the limit by a single function ϱpx, tq of two continuous
variables, space and time. By the de"nition of the derivative as a limit, we also have that

ϱn`1ptq ´ ϱnptq
a

Ñ ϱ1px, tq ,
1

a

ˆ
ϱn`1ptq ´ ϱnptq

a
´ ϱnptq ´ ϱn´1ptq

a

˙
Ñ ϱ2px, tq .

where a prime denotes an x-derivative.

Dividing the equations of motion (3.3) by ML2 “ amL2 and taking the continuum limit we
"nd the single equation of motion

:ϱ “ ´ g

L
sin ϱ ` k

mL2
ϱ2

for the “!eld” ϱpx, tq. We can get rid of the constants by rescaling x and t6, and rearrange to
get the equation

:ϱ ´ ϱ2 “ ´ sin ϱ ,

which is nothing but the sine-Gordon equation ϱtt ´ ϱxx “ ´ sin ϱ for the "eld ϱ! We say
therefore that the sine-Gordon equation is the continuum limit of (3.3).

We can use this mechanical model to gain some intuition about the possible con"gurations of
the sine-Gordon "eld:

6Send x "Ñ
b

k
mgL x and t "Ñ

b
L
g t.
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• The lowest energy state (or “ground state”, or “vacuum”) of the system is the con-
"guration with all pendulums pointing downwards,

ϱpx, tq “ 0 pmod 2ϑq @ x ,

which is a con"guration of stable equilibrium.7 See "gure 3.4.

Figure 3.4: Con"guration of stable equilibrium for the chain of pendulums.

• By a continuous perturbation of the vacuum, we can obtain con"guration which rep-
resents a “small wave”, which satis"es the same boundary conditions of the vacuum,
ϱ Ñ 0 as x Ñ ˘8:8

Figure 3.5: A small wave going through the chain of pendulums.

• There are also con"gurations in which the chain of pendulums twists around the line.
If they twist once in the direction of increasing angles, so that ϱ increases by 2ϑ from
x Ñ ´8 to x Ñ `8, this describes a kink or a continuous deformation thereof:

If instead they twist once in the direction of decreasing angles, so that ϱ decreases by
2ϑ from x Ñ ´8 to x Ñ `8, this describes an anti-kink or a continuous deformation
thereof.

• The limiting values of the sine-Gordon "eld ϱ as x Ñ ˘8 are !xed: changing them
would require twisting in"nitely many pendulums by 360 degrees, which would cost
energy.

7We will con"rm this intuition later when we study the energy of the sine-Gordon "eld.
8We will see later that this “small wave” does not need to be small, in fact. For instance it could look like a

kink followed by an antikink.
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Figure 3.6: A kink going through the chain of pendulums.

If
ϱp`8, tq ´ ϱp´8, tq “ 2mϑ , with m ‰ 0 integer ,

then the con"guration of the system cannot be deformed continuously to the vac-
uumwhere all pendulums point downwards, unlike the “small wave” mentioned above.
This tells us that the kink (or the antikink) cannot disperse/dissipate into the vac-
uum. This is related to the notion of topological stability, which we will discuss in
the next chapter.

I invite you to play with thisWolfram demonstration of the chain of coupled pendulums, using
Mathematica (which should be available on university computers – let me know if it isn’t) or
the free Wolfram Player. Play with the parameters and visualise a kink, the scattering of two
kinks or of a kink and an anti-kink, and the breather, a bound state of a kink and an anti-kink.
We will study all of these con"gurations in the continuum limit later in the term, using the
sine-Gordon equation.

3.4 Travellingwave solutions and 1dpoint particles (bonus
material)

Looking for a travellingwave solutions upx, tq “ fpx´vtq ” fpωq of the KdV and sine-Gordon
equation, we encountered equations of the form

f 2 “ F̂ pfq

where a prime denotes a derivative with respect to ω. We integrated this equation to

1

2
pf 1q2 ` V̂ pfq “ Ê “ const (˚)

where

V̂ pfq “ ´
"
df F̂ pfq .
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Figure 3.7: Example of a potential energy V pxq and force F pxq “ ´V 1pxq.

By tuning the integration constant in this inde"nite integral and absorbing it in Ê, we can set
Ê to zero or to any value we wish.

The previous equations are analogous to the classical mechanics of a point particlemov-
ing in one space dimension. Let xptq be the position of the point particle at time t and
dots denote time derivatives. The equation of motion (EoM) of the point particle is Newton’s
equation

m:x “ F pxq
(mass ˆ acceleration “ force) can be integrated to the energy conservation law

1

2
m 9x2 ` V pxq “ E “ const

(kinetic energy ` potential energy “ total energy, which is constant in time), where the force
and the potential energy are related by

F pxq “ ´ d

dx
V pxq .

The potential energy and the total energy can be shifted by a common constant with no phys-
ical change. See "gure 3.7 for an example of a potential energy V pxq and the associated force
F pxq “ ´V 1pxq.

It may be useful to think of x as the horizontal coordinate of a point particle (think of an
in"nitesimal ball) moving on a hill of vertical height V pxq at coordinate x, subject only to
the gravitational force and the reaction of the ground (which is equal and opposite when the
ground is $at). Even if you are not very familiar with classical mechanics, you will hopefully
have some intuition of what will happen to the ball.9

9You can also model this by riding a brakeless bike in hilly Durham. It’s a good idea to develop some intuition
about this physical system without running the experiment yourself, which I don’t recommend. (This is one of
a number of reasons why theoretical physics is superior to experimental physics.)
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The mathematical correspondence between the equations for a travelling wave in one space
and one time dimension and for a classical point particle in one space dimension is

ω ’Ñ t

f ’Ñ x

1 ’! m

F̂ pfq ’Ñ F pxq
Ê ´ V̂ pfq ’Ñ E ´ V pxq

This correspondence allows us to understand the qualitative behaviour of travelling waves
even when we cannot integrate equation (˚) exactly, using elementary facts from classical
mechanics, which are encoded in the the mathematics of the previous equations:

1. The total energy is conserved and can only be converted from kinetic energy (which
is non-negative!) to potential energy and vice versa. The velocity 9x of the point particle
is zero if and only if the kinetic energy is zero, which means that all the energy is stored
in potential energy:

9x “ 0 $ñ V pxq “ E .

2. When the point particle reaches one of the special values of x such that V pxq “ E,
either of two things happens depending on the acceleration of the particle:

(a) F pxq “ ´ d
dxV pxq ‰ 0:

The acceleration is non-vanishing, therefore the particle reverses its direction of
motion:

These values of x are known as “turning points”.

(b) F pxq “ ´ d
dxV pxq “ 0:

The acceleration vanishes and the particle stops.
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These values of x are known as “equilibrium points”. The approach to equilib-
rium takes an in"nite time.

˚ EXERCISE: Derive the previous statements by Taylor expanding the potential energy
about a point where V pxq “ E and substituting the expansion in the energy
conservation law.

Now let us translate this discussion to the context of travelling waves. We will focus on the
examples of the KdV and the sine-Gordon equation here, but more examples are available in
[Ex 13] in the problems set.

EXAMPLES:

1. KdV: Ê “ 0 , V̂ pfq “ f 2
`
f ´ v

2

˘
pv % 0q

From a graphical analysis of V̂ pfq and the analogy between travelling waves and point
particles in one dimension, we see that there exists a travelling wave solution that starts
at f “ 0` at ω Ñ ´8, increases until the ‘turning point’ f “ v{2, and decreases to
f “ 0` at ω Ñ `8. This is nothing but the KdV soliton (3.1) that we found in section
3.1. If instead the travelling wave solution starts at f “ 0´ at ω Ñ ´8, then it will fall
down the cli! and reach f Ñ ´8, leading to a singular solution, that we discard. Note
that if v & 0 we have that V̂ p0q “ 0, but V̂ pfq % 0 for small f ‰ 0. Therefore the only
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real solution obeying the boundary conditions is the constant zero solution fpωq “ 0
for all ω. If v “ 0, in addition to the trivial solution there is also a singular real travelling
wave solution that we discard on physical grounds.

2. sine-Gordon: Ê “ 0 , V̂ pfq “ ϖ2 pcos f ´ 1q

From a graphical analysis of V̂ pfq, we see that two classes of travelling wave solutions
exist: one where f interpolates between 2nϑ at x Ñ ´8 and 2pn ` 1qϑ x Ñ ´8, and
another where f interpolates between 2nϑ at x Ñ ´8 and 2pn ´ 1qϑ x Ñ ´8. We
identify these solutions with the kink and anti-kink (3.2) of section 3.2.

˚ EXERCISE: Using the analogywith a one-dimensional point particle, determine the qual-
itative behaviour of a travellingwave solution of the KdV equation on a circle
(i.e. with periodic boundary conditions). [Hint: allow integration constants
A,B ‰ 0 and look at V̂ pfq.] [Ex 14*]


