
Chapter 5

Conservation laws

The main references for this chapter are §5.1.1 and §5.1.2 of [5].
Conservation laws provide the most fundamental characterisation of a physical system:
they tell us which quantities don’t change with time. For the purpose of this course, they
play a key role because they explain why the motion of “true” solitons is so restricted that
they scatter without changing their shapes.
The idea of a conservation law is to construct spatial integrals of functions of the field u
and its derivatives

Q “

ż `8

´8

dx ρpu, ux, uxx, . . . , ut, utt, . . . q (5.1)

which are constant in time (in physics parlance, they are constants of motion)

d

dt
Q “ 0 (5.2)

when u satisfies its equation of motion (EoM), such as the sine-Gordon equation or the
KdV equation. The constant of motion (5.1) is called a conserved charge or conserved
quantity and the equation (5.2) stating its time-independence is called a conservation
law.
For the KdV and the sine-Gordon equation, it turns out that there exist infinitely many
conserved quantities. This makes them integrable systems (more about this next term)
and explains many of their special properties.

5.1 The basic idea
The standard method for constructing a conserved charge like (5.1) involves finding two
functions ρ and j of u and its derivatives, such that the EoM for u implies the local conser-
vation law or continuity equation

Bρ

Bt
`

Bj

Bx
“ 0 (5.3)
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and the boundary conditions imply

j Ñ C as x Ñ ˘8 (5.4)

with the same constant C at ´8 and `8. Then

d

dt

ż `8

´8

dx ρ “

ż `8

´8

dx
Bρ

Bt
“

p5.3q
´

ż `8

´8

dx
Bj

Bx
“ ´rjs`8

´8 “
p5.4q

0 .

Hence
Q “

ż `8

´8

dx ρ (5.5)

is a conserved charge. The integrand ρ is called the conserved charge density, and j is
called the conserved current density (or just current, by a common abuse of terminol-
ogy.)

5.2 Example: conservation of energy for sine-Gordon
Is the total energy

E “

ż `8

´8

dx E

conserved for the sine-Gordon field, where the energy density is

E “
1

2
u2t `

1

2
u2x ` p1 ´ cosuq ? (5.6)

The energy density E plays the role of ρ here. Can we show then that ρ “ E obeys a
continuity equation (5.3) for some function j that obeys the limit condition (5.4), when the
sine-Gordon equation (EoM)

utt ´ uxx ` sinu “ 0

holds? Let’s compute:

BE
Bt

“ ututt ` uxuxt ` sinu ¨ ut

“ utputt ` sinuq ` uxuxt

“
EoM

utuxx ` uxuxt “
B

Bx
putuxq ”

B

Bx
p´jq ,

and since the BCs for the sine-Gordon equation imply that utux Ñ 0 as x Ñ ˘8, we
deduce that energy is conserved:

dE

dt
“ 0 .
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5.3 Conserved quantities for the KdV equation
Let us return to the KdV equation

ut ` 6uux ` uxxx “ 0 .

We can rewrite the KdV equation as a continuity equation
B

Bt
u `

B

Bx
p3u2 ` uxxq “ 0

and since the BCs appropriate for KdV on the lineR are that u, ux, uxx, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8,
we deduce that

Q1 “

ż `8

´8

dx u (5.7)

is conserved. For the canal, this is the conservation of water1.
Next, we can ask whether ρ “ u2 is a conserved charge density. Let’s compute:

pu2qt “ 2uut “
KdV

´12u2ux ´ 2uuxxx “ ´4pu3qx ´ 2uuxxx

“ p´4u3 ´ 2uuxxqx ` 2uxuxx “ p´4u3 ´ 2uux ` u2xqx ,

where to go from the first to the second line we used the trick familiar from integration by
parts, fgx “ pfgqx ´ fxg. (We say that fgx and ´fxg are equal up to a total x-derivative.)
Hence we deduce that

Q2 “

ż `8

´8

dx u2 (5.8)

is also conserved. This is interpreted as the momentum of the wave.
Next, what about ρ “ u3? Using the notation “ “ ” to mean “equal up to a total x-
derivative” and striking out terms which are total derivatives (t.d.), we find

pu3qt “ 3u2ut “
KdV

´18���* t.d.
u3ux ´ 3u2uxxx ““” 6uuxuxx

“
KdV

´utuxx ´ �����: t.d.
uxxxuxx ““” utxux “

1

2
pu2xqt ,

so rearranging we find a third conserved charge

Q3 “

ż `8

´8

dx

ˆ

u3 ´
1

2
u2x

˙

, (5.9)

which is interpreted as the energy of the wave.
It turns out that the conservation laws (5.7)-(5.9) ofmass, momentum and energy follow,
by a theorem of Emmy Noether’s, from the “obvious” symmetries

u ÞÑ u ` c ùñ mass conservation
x ÞÑ x ` c1

ùñ momentum conservation
t ÞÑ t ` c2

ùñ energy conservation
1(5.7) is the (net) area under the profile of the wave, taking u “ 0 (flat water surface) as zero. Assuming

that water has constant density (mass per unit area) and choosing units so that the density is 1, (5.7) is also
the mass of the wave.
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of the KdV equation, so they are expected. But then surprisingly Miura, Gardner and
Kruskal [14] found (by hand!) eight more conserved charges, all (bar one, see [Ex 29])
of the form

Qn “

ż `8

´8

dx pun ` . . . q ,

e.g.

Q4 “

ż `8

´8

dx

ˆ

u4 ´ 2uu2x `
1

5
u2xx

˙

Q5 “

ż `8

´8

dx

ˆ

u5 ´ 5u2u2x ` uu2xx ´
1

14
u2xxx

˙

...

Q10 “

ż `8

´8

dx

ˆ

u10 ´ 60u7u2x ` (29 terms) `
1

4862
u2xxxxxxxx

˙

.

(5.10)

˚˚ EXERCISE: Calculate Q6, . . . , Q9 as well and the 29 missing terms in Q10. 2

This surprising result raises two natural questions:
1. Are there infinitely many more conserved charges?
2. If so, is there a systematic way to find them?

5.4 The Gardner transform
The answer to both questions is affirmative, and is based on a very clever (though at first
sight unintuitive) method devised by Gardner, reported in the paper [14].
First, let us suppose that the KdV field upx, tq can be expressed in terms of another function
vpx, tq as

u “ λ ´ v2 ´ vx , (5.11)

where λ is a real parameter. Substituting (5.11) into the KdV equation we find

0 “ pλ ´ v2 ´ vxqt ` 6pλ ´ v2 ´ vxqpλ ´ v2 ´ vxqx ` pλ ´ v2 ´ vxqxxx

“ . . . [Ex 27]

“ ´

ˆ

2v `
B

Bx

˙

“

vt ` 6pλ ´ v2qvx ` vxxx
‰

“ 0 . (5.12)

So
KdV for u ðñ (5.12) for v ,

and in particular, if v solves

vt ` 6pλ ´ v2qvx ` vxxx “ 0 , (5.13)

2Just kidding.
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then u given by (5.11) solves KdV.
For λ “ 0, (5.13) is the “wrong sign” mKdV equation that you encountered in [Ex 14], and

u “ ´v2 ´ vx (5.14)

is known as theMiura transform, found by Miura earlier in 1968 [15].
Gardner’s idea was to change Miura’s transformation by setting

v “ ϵw `
1

2ϵ

λ “
1

4ϵ2

(5.15)

for some non-vanishing real constant ϵ. Then

λ ´ v2 “
1

4ϵ2
´

ˆ

ϵw `
1

2ϵ

˙2

“ ´w ´ ϵ2w2 ,

which implies that u and w are related by the Gardner transform (GT)

u “ ´w ´ ϵwx ´ ϵ2w2 . (5.16)

We will use the free parameter ϵ to great advantage below.
In terms of w, the KdV equation for u, or equivalently equation (5.12) for v, becomes

ˆ

2ϵw `
1

ϵ
`

B

Bx

˙

“

ϵwt ´ 6pw ` ϵ2w2
qϵwx ` ϵwxxx

‰

“ 0 ,

or equivalently
ˆ

1 ` ϵ
B

Bx
` 2ϵ2w

˙

“

wt ´ 6pw ` ϵ2w2
qwx ` wxxx

‰

“ 0 . (5.17)

In particular, any w that solves the simpler equation

wt ´ 6pw ` ϵ2w2
qwx ` wxxx “ 0 (5.18)

produces a u that solves the KdV equation by the Gardner transform (5.16).
Now we are going to think about this backwards: let’s view u as a fixed solution of KdV,
while w varies with ϵ so that (5.16) holds. Then

• For ϵ “ 0, equation (5.17) is nothing but the KdV equation with a reversed middle
term. Indeed the Gardner transform reduces to u “ ´w in this case.

• For ϵ ‰ 0, we encounter two problems:
1. To obtain w in terms of u, we need to solve a differential equation (5.16);
2. The differential operator 1 ` ϵ B

Bx
` 2ϵ2w in (5.17) is non-trivial. It might have

a non-vanishing kernel, so we can’t immediately conclude that (5.18) holds.
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Gardner’s key insight was that we can solve both problems at once by viewing w as a
formal power series in ϵ:3

wpx, tq “

8
ÿ

n“0

wnpx, tqϵn “ w0px, tq ` w1px, tqϵ ` w2px, tqϵ
2

` . . . (5.19)

1. To solve the first problem, we substitute (5.19) in the Gardner transform (5.16)

u “ ´pw0 ` w1ϵ ` w2ϵ
2

` . . . q ´ ϵpw0 ` w1ϵ ` w2ϵ
2

` . . . qx

´ ϵ2pw0 ` w1ϵ ` w2ϵ
2

` . . . q2

“ ´w0 ´ϵw1 ´ϵ2w2 ´ϵ3w3 ` . . .
´ϵw0,x ´ϵ2w1,x ´ϵ3w2,x ` . . .

´ϵ2w2
0 ´ϵ32w0w1 ` . . .

and invert it to determinew in terms of u. Since u is fixed, it is of order ϵ0. Comparing
order by order we obtain:

ϵ0 : w0 “ ´u (5.20)
ϵ1 : w1 “ ´w0,x “ ux (5.21)
ϵ2 : w2 “ ´w1,x ´ w2

0 “ ´uxx ´ u2 (5.22)
ϵ3 : w3 “ ´w2,x ´ 2w0w1 “ uxxx ` 4uux (5.23)

...

which in principle determines recursively all the coefficients wn of the formal power
series (5.19) in terms of u.

2. Since w is a formal power series in ϵ, so is the expression inside the square brackets
in (5.17):

“

wt ´ 6pw ` ϵ2w2
qwx ` wxxx

‰

” zpx, tq “

8
ÿ

n“0

znpx, tqϵn “ z0 ` z1ϵ ` z2ϵ
2

` . . .

The same applies to the differential operator

A ” 1 ` ϵ
B

Bx
` 2ϵ2w ” 1 `

8
ÿ

n“1

Anϵ
n ,

where 1 is the identity operator, and An are linear (differential) operators:

A1 “
B

Bx
, A2 “ 2w0¨ , A3 “ 2w1¨ , A4 “ 2w2¨ , . . .

where I wrote the dots to make clear which operators act by multiplication by a
3By a formal power series we mean that we don’t worry about the convergence of the series. (5.19) is

actually an asymptotic expansion, for those who know what that is.
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function. Then (5.17) becomes the formal power series equation

0 “

˜

1 `

8
ÿ

n“1

Anϵ
n

¸˜

8
ÿ

k“0

zkϵ
k

¸

“ z0 `ϵz1 `ϵ2z2 `ϵ3z3 ` . . .
`ϵA1z0 `ϵ2A1z1 `ϵ3A1z2 ` . . .

`ϵ2A2z0 `ϵ3A2z1 ` . . .
`ϵ3A3z0 ` . . .

` . . .

which we can solve order by order as follows:

ϵ0 : z0 “ 0

ϵ1 : z1 “ ´A1z0

ϵ2 : z2 “ ´A1z1 ´ A2z0 “ 0 (5.24)
ϵ3 : z3 “ ´A1z2 ´ A2z1 ´ A3z0 “ 0

...

Thus we have shown that, order by order in the formal power series in ϵ, equation
(5.18) holds! But – punchline ahead – (5.18) is a continuity equation

B

Bt
w `

B

Bx

`

´3w2
´ 2ϵ2w3

` wxx

˘

“ 0 . (5.25)

Since w,wx, wxx, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 order by order in powers of ϵ, this means that
the charge

Q̃ “

ż `8

´8

dx w (5.26)

is conserved.
Now comes the important point: since w “

ř8

n“0wnϵ
n is a formal power series in ϵ, so is

the conserved charge Q̃ :4

Q̃ “

ż `8

´8

dx
8
ÿ

n“0

wnϵ
n

“

8
ÿ

n“0

ϵn
ż `8

´8

dx wn ”

8
ÿ

n“0

ϵnQ̃n .

And since Q̃ is a conserved charge for all values of the free parameter ϵ, it must be that the
charges

Q̃n “

ż `8

´8

dx wn pn “ 0, 1, 2, . . . q (5.27)

are all separately conserved!
4Strictly speaking themiddle equality assumes convergence, but we are working with a formal expansion,

so we don’t need to worry about this subtlety.
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Going back to (5.22), we find that the first few conserved charges are

Q̃0 “ ´

ż `8

´8

dx u ” ´Q1

Q̃1 “ `

ż `8

´8

dx ux “ rus
`8
´8 “ 0

Q̃2 “ ´

ż `8

´8

dx puxx ` u2q “ ´

ż `8

´8

dx u2 ” ´Q2

Q̃3 “ `

ż `8

´8

dx puxxx ` 4uuxq “ ruxx ` 2u2s
`8
´8 “ 0

...

(5.28)

As you might have guessed, the general pattern is as follows:

Q̃2n´1 “

ż `8

´8

dx ptotal derivativeq “ 0

Q̃2n´2 “ const ˆ Qn “ const ˆ

ż `8

´8

dx pun ` . . . q ‰ 0 .

See [5] for a general proof.
The existence of infinitely many conserved charges makes the KdV equation integrable.
As you’ll see in the exercises for this chapter, these unexpected conservation laws give us
a lot of information about multi-soliton solutions of the KdV equation, see [Ex 29] and
[Ex 30].

5.5 Extra conservation laws for relativistic field equa-
tions (bonus material)

Let’s return to our other main example, the sine-Gordon model. We’ve already seen that
energy is conserved, but this is not particularly surprising. In fact for any relativistic field
theory of a single (‘scalar’) field u in 1 space (x) + 1 time (t) dimensions (e.g. Klein-Gordon,
sine-Gordon, “ϕ4”, . . . ), the quantity

E “

ż `8

´8

dx E “

ż `8

´8

dx

„

1

2
u2t `

1

2
u2x ` V puq

ȷ

(5.29)

is conserved, provided the equation of motion

utt ´ uxx “ ´V 1
puq (5.30)

is satisfied.
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˚ EXERCISE: Check this statement.
The so-called scalar potential V puq determines the theory. For instance

V puq “

$

’

’

’

&

’

’

’

%

1
2
m2u2 (Klein-Gordon)

1 ´ cosu (sine-Gordon)
λ
2
pu2 ´ a2q2 (“ϕ4”)
. . .

A deep theorem due to Emmy Noether, already mentioned in passing above, shows that
the conservation of energy follows from the invariance of the theory under arbitrary time
translations t ÞÑ t ` c. Similarly, invariance under space translations x ÞÑ x ` c1 implies
the conservation of momentum P .
We will not delve into Noether’s theorem, but you might encounter it in other courses. In
any case, it is of limited help for our purposes: our main interest will be in more surprising,
‘bonus’, charges, similar to those already seen for the KdV equation in the last section. The
question that we would like to answer is:

Can there be more conserved quantities, in addition to energy and momen-
tum?

We will answer this question constructively.
The first step is to switch to light-cone coordinates

x˘
“

1

2
pt ˘ xq ðñ

#

t “ x` ` x´

x “ x` ´ x´
, (5.31)

which are so called because the trajectories of light rays are x` “ const or x´ “ const for
left-moving or right-moving rays respectively. By the chain rule we calculate

B˘ ”
B

Bx˘
“

Bt

Bx˘

B

Bt
`

Bx

Bx˘

B

Bx
“

B

Bt
˘

B

Bx
” Bt ˘ Bx

ùñ B`B´ “ B
2
t ´ B

2
x ,

so the EoM can be written as
u`´ “ ´V 1

puq , (5.32)

where we used the shorthand notation f˘ ”
Bf

Bx˘ ” B˘f .
Now suppose that a couple of densities T andX can be found such that given the equation
of motion (5.32),

B´T “ B`X . (5.33)

Converted back to the original space and time coordinates x and t, this is nothing but the
continuity equation (5.3)

Bt pT ´ Xq
looomooon

ρ

´Bx pT ` Xq
looomooon

´j

“ 0 .
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with ρ “ T´X and j “ ´T´X . Provided that the limiting values of ´T´X as x Ñ ˘8

agree so that (5.4) holds, this means that
ş8

´8
pT ´ Xqdx will be a conserved quantity.

The goal is to construct examples of such pT,Xq pairs, and to simplify life I’ll suppose
that T is a polynomial in x`-derivatives of u: this means we are looking for polynomial
conserved densities. We will also (mostly) disregard total x`-derivatives in T , or in other
words consider two polynomial conserved densities which differ by a total x`-derivative
to be equivalent: if pT,Xq solves (5.33) and T 1 “ T ` B`U , then

B´T
1

“ B´T ` B´B`U “ B`X
1

whereX 1 “ X`B´U . Hence pT 1, X 1q is another solution to (5.33), but so long as the limits
of U as x Ñ ˘8 are equal, it leads to exactly the same conserved quantity as before:
ż 8

´8

pT 1
´ X 1

q dx´

ż 8

´8

pT ´ Xq dx “

ż 8

´8

pB`U ´ B´Uq dx “

ż 8

´8

2BxU dx “ r2U s
8

´8
“ 0 .

One more concept is useful: the rank, or Lorentz spin of a single term in a general poly-
nomial in u and its light-cone derivatives is the number of B` derivatives minus the number
of B´ derivatives. For instance pu`q3u´u``´ has Lorentz spin 3 ´ 1 ` p2 ´ 1q “ 3. Ac-
cording to the theory of special relativity, objects of different spins transform differently
under the “Lorentz group” of symmetries of relativistic field equations. If you would like
to know more about Lorentz transformations and Lorentz spin, you can read this optional
note. Terms with different Lorentz spins will never cancel against each other in (5.33),
since using the equation of motion (5.32) to convert an occurance of u`´ into ´V 1puq does
not affect the rank. As a result, each spin can be considered separately and so, for s “ 0,
1, 2 . . . , we will look for solutions pTs`1, Xs´1q to (5.33), where Ts`1 is a polynomial in the
x`-derivatives of uwith Lorentz spin s`1. Via (5.33),Xs´1 must then have spin s´1. The
corresponding conserved charge will be written as Qs:

Qs “

ż `8

´8

dx pTs`1 ´ Xs´1q (5.34)

As x Ñ ˘8 we’ll assume that all derivatives of u tend to zero, but (to allow for topological
lumps) u itself might tend to other, possibly unequal, values. Notice also that for each pair
pTs`1, Xs´1q the roles of x` and x´ can be swapped throughout to find a partner pair
pT´s´1, X´s`1q where T´s´1 is a polynomial in x´ derivatives, with Lorentz spin ´s´1.
Proceeding spin by spin:

s “ 0 T1 “ u`

is the unique polynomial density of spin 1, up to an irrelevant multiplicative factor
which can be absorbed in the normalisation of the charge. It solves (5.33) withX´1 “

u´, since B´u` “ u´` “ u`´ “ B`u´. The corresponding spin zero conserved
charge is the topological charge

Q0 “

ż `8

´8

dx pu` ´ u´q “ 2

ż `8

´8

dx ux “ 2rus
`8
´8 .

Note: T1 differs from zero by a total x`-derivative, T1 “ 0` B`U with U “ u, so by
the rules above we might want to discard it. That would be too hasty, since this U

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Lorentz_and_lightcone.pdf
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Lorentz_and_lightcone.pdf
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could have different limits as x Ñ ˘8, in fact, this happens precisely in those cases
where the topological charge is non-trivial.

s “ 1 T2 Ą u``, u
2
`,

which is a shorthand for: T2 is a linear combination of u`` and u2`. However u`` “

pu`q` is a total derivative, and since u` Ñ 0 as x Ñ ˘8 we can disregard this term
without loss of generality, and consider T2 “ u2`. Then

B´T2 “ B´u
2
` “ 2u`u`´ “

EoM
´2V 1

puqu` “ ´2B`V puq ” B`X0

with X0 “ ´2V puq. Therefore

Q1 “

ż `8

´8

dx pT2 ´ X0q “

ż `8

´8

dx ru2` ` 2V puqs (5.35)

is conserved, for any V . Swapping x` and x´, T´2 “ u2´ is another conserved
density, with the same X0, leading to

Q´1 “

ż `8

´8

dx pT2 ´ X0q “

ż `8

´8

dx ru2´ ` 2V puqs (5.36)

Taking the sum and difference and choosing a convenient normalization, we find
two conserved charges

1

4
pQ1 ` Q´1q “

ż `8

´8

dx

„

1

4
pu2` ` u2´q ` V puq

ȷ

” E “

ż `8

´8

dx

„

1

2
u2t `

1

2
u2x ` V puq

ȷ

(5.37)

1

4
pQ´1 ´ Q1q “

ż `8

´8

dx
1

4
pu2´ ´ u2`q

” P “ ´

ż `8

´8

dx utux , (5.38)

which are interpreted as the energy E and the momentum P .
s “ 2 T3 Ą u```, u``u`, u

3
`,

but u``` “ pu``q` and u``u` “ 1
2
pu2`q` are total derivatives of functions which

vanish at spatial infinity, hence they can be disregarded. So without loss of generality
we can take T3 “ u3` and then

B´T3 “ B´u
3
` “ 3u2`u`´ “

EoM
´3V 1

puqu2` .

The RHS of the previous equation cannot be a total x`-derivative, because the high-
est x` derivative of u (in this case u`) does not appear linearly.

˚ EXERCISE: Convince yourself that this statement is correct. Suppose that Bn
`u is the

highest x`-derivative of u appearing in a function Y of u and its x`-
derivatives. How does the highest x`-derivative of u appear in B`Y then?
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s “ 2 We learn therefore that there is no conserved charge Q2 of spin 2 built out of poly-
nomial conserved densities.

s “ 3 T4 Ą u````, u```u`, u
2
``, u``u

2
`, u

4
`,

but we can drop the first and fourth term as they are total derivatives of functions
which vanish at spatial infinity. Moreover u```u` “ ´u2`` ` pu``u`q`, so we can
also disregard one of u```u` and u2`` without loss of generality. The most general
expression for T4 up to an irrelevant total x`-derivative is therefore

T4 “ u2`` `
1

4
λ2u4` , (5.39)

where λ is a constant to be determined below and the factor of 1{4 was inserted for
later convenience.5 Then

B´T4 “ 2u``u``´ ` λ2u3`u`´

“
EoM

´2u`` pV 1
puqq

`
´ λ2u3`V

1
puq

“ ´2u``u`V
2
puq ´ λ2u3`V

1
puq .

This may not seem very promising, but the highest derivative in the first term oc-
curs linearly, allowing a total derivative to be extracted using the trick familiar from
integration by parts:

“ ´pu2`V
2
puqq` ` u3`V

3
puq ´ λ2u3`V

1
puq

“ ´pu2`V
2
puqq` ` u3`

“

V 3
puq ´ λ2V 1

puq
‰

. (5.40)
We are hoping to obtain a total x`-derivative. The first term in (5.40) is a total x`-
derivative, but in the second term the highest derivative, which is u`, does not appear
linearly but rather to the third power. By the previous argument which was the topic
of the exercise, the second term is a total x`-derivative if and only if

V 3
puq ´ λ2V 1

puq “ 0 . (5.41)

If (5.41) holds, we have X2 “ ´u2`V
2puq and

Q3 “

ż `8

´8

dxpT4 ´ X2q “

ż `8

´8

dx

„

u2`` `
1

4
λ2u4` ` u2`V

2
puq

ȷ

(5.42)

is a conserved charge of spin 3. If instead (5.35) does not hold, there is no extra
(polynomial) conserved charge of spin 3.

To summarize, the relativistic field theories of a single scalar field u which have an extra
conserved charge of spin 3 are those with a scalar potential V puq which satisfies equation
(5.41) for some value of the constant λ. Let us examine the various possibilities:

1. λ2 “ 0 : V puq “ A ` Bpu ´ u0q
2,

where A and B are constants. Up to a linear redefinition of u, this scalar potential
leads to the Klein-Gordon equation. This is a linear equation which describes a free
field (i.e. a field free from interactions) and is therefore not interesting from the point
of view of solitons.

5To be precise, T4 should bewritten as a linear combination of u2`` and u4`. It turns out that the coefficient
of u`` must be non-vanishing, hence we can normalise it to 1.
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2. λ2 ‰ 0 : V puq “ A ` Beλu ` Ce´λu,
where A,B and C are constants.
a) If only one of B,C is non-vanishing, the EoM is either

C “ 0 : u`´ “ ´Bλeλu or B “ 0 : u`´ “ Cλe´λu .

By a linear redefinition of u, we can always rewrite the EoM as the Liouville
equation

u`´ “ eu . (5.43)

b) If neither B or C vanish, then by a linear redefinition of u we can write the
EoM as the sine-Gordon equation

u`´ “ ´ sinu (5.44)

if λ2 ă 0, or as the sinh-Gordon equation

u`´ “ ´ sinhu (5.45)

if λ2 ą 0.
Equations (5.43)-(5.45) are special: they have “hidden” conservation laws that generic in-
teracting relativistic field equations of the form u`´ “ ´V 1puq lack. More can be done in
this direction – in particular, it is possible to show that the extra charge just found for Sine-
Gordon is the first of an infinite sequence, just like for KdV – but instead the next chapter
will return to the sine-Gordon kink and antikink solutions, and look into how they scatter
against each other.


