
Chapter 6

Bäcklund transformations

The main reference for this chapter is §5.4 of [5].
So far, we have constructed solutions for moving solitons only as travelling waves, which
describe the propagation of a single soliton. Our next goal will be to construct analytic
solutions for multiple colliding solitons. In these cases it won’t be possible to reduce the
partial differential equation to an ordinary differential equation, so the existence of such
exact solutions is much more surprising. The method that we will use in this chapter is a
solution-generating technique called the Bäcklund transformation.
The method was introduced in the late 19th century by the Swedish mathematicianAlbert
Victor Bäcklund and by the Italian mathematician Luigi Bianchi1 to map between pairs
of surfaces in three-dimensional space. The sine-Gordon equation appears in this context
when one considers hyperboloids, which are surfaces of negative curvature.
There are two main uses of the Bäcklund transformation:

1. To generate solutions of a difficult PDE from solutions of a possibly simpler
PDE;

2. To generate new solutions of a given PDE from already known solutions of
the same PDE.

We will mostly be interested in use 2, but [Ex 31-33] from the third problem sheet show
some examples of use 1. Our final goal in this chapter will be to obtain multi-soliton solu-
tions of the sine-Gordon equation.

6.1 Definition
Consider two functions u and v, and two differential equations

P rus “ 0 (6.1)

Qrvs “ 0 (6.2)

where P and Q are two differential operators.
1who, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after

whom the Bianchi identities in differential geometry and general relativity are named.
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If there is a pair of relations (which could be differential equations)

R1ru, vs “ 0 , R2ru, vs “ 0 (6.3)

between u and v such that
- If P rus “ 0, i.e. (6.1), then (6.3) can be solved for v, to give a solution of (6.2),
Qrvs “ 0;

- If Qrvs “ 0, i.e. (6.2), then (6.3) can be solved for u, to give a solution of (6.1),
P rus “ 0;

then (6.3) is called a Bäcklund transformation (BT). If furthermore P “ Q, so that the
two differential equations are identical, then (6.3) is called an auto-Bäcklund transfor-
mation (aBT).
This is useful if (6.3) is easier to solve than (6.1) or (6.2). Then we can use (6.3) to generate
solutions of the harder equation from solutions of the easier equation. If P “ Q, we can
start from a simple seed solution (e.g. u “ 0) to generate new non-trivial solutions.
Vocabulary:
‚ (6.1) and (6.2) are “integrability conditions” for the Bäcklund transformation (6.3).
‚ (6.3) can be integrated for v if the integrability condition P rus “ 0 is satisfied.
‚ (6.3) can be integrated for u if the integrability condition Qrvs “ 0 is satisfied.

6.2 A simple example
Take the two-dimensional Laplace operator P “ Q “ B2

x ` B2
y in (6.1) and (6.2):

P rus “ uxx ` uyy “ 0 (6.4)
Qrvs “ vxx ` vyy “ 0 (6.5)

and for the Bäcklund transformation (6.3)

R1ru, vs “ ux ´ vy “ 0

R2ru, vs “ uy ` vx “ 0 .
(6.6)

Let us check that (6.4)-(6.5) are integrability conditions for (6.6). Differentiating (6.6) with
respect to x and y and adding or subtracting we find

0 “ `BxR1 ` ByR2 “ `uxx ´ vyx ` uyy ` vxy “ uxx ` uyy

0 “ ´ByR1 ` BxR2 “ ´uxy ` vyy ` uyx ` vxx “ vxx ` vyy ,

therefore the relations (6.6) imply (6.4) and (6.5).2 This shows that (6.6) is an auto-Bäcklund
transformation for the two-dimensional Laplace equation.

2Note: in this example we don’t even need to use the other differential equation. This is not always the
case.



CHAPTER 6. BÄCKLUND TRANSFORMATIONS 50

EXAMPLE:
vpx, yq “ 2xy solves the Laplace equation (6.5). Let us substitute this v into the aBT to
find another solution u of the same equation:

#

ux “ vy “ 2x

uy “ ´vx “ ´2y
ùñ

#

u “ x2 ` fpyq

f 1pyq “ ´2y ñ fpyq “ ´y2 ` c ,

so we find the function upx, yq “ x2 ´ y2 ` c, where c is a constant. It is immediate to
check that this u solves the Laplace equation (6.4).
The equations R1ru, vs “ R2ru, vs “ 0 in (6.6) are nothing but the Cauchy-Riemann
equations for theholomorphic (“ complex analytic) functionw “ u`iv of the complex
variable z “ x ` iy. In the example above, wpzq “ z2 ` c. The equations P rus “ 0 and
Qrvs “ 0 in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic
function are harmonic, that is, they solve the Laplace equation. Two such functions u and
v are often called harmonic conjugate of each other.
REMARKS:

1. Given v, the Bäcklund transformation (6.6) is a system of two equations for u. Gener-
ically there won’t be any solutions for this system. For example, if we pick v “ x2,
then the system is

#

ux “ vy “ 0

uy “ ´vx “ ´2x

which has no solutions for u. But v “ x2 doesn’t solve (6.5)! The integrability
condition (6.5) is what guarantees that the system (6.6) can be consistently solved
for u.

2. This auto-Bäcklund transformation generates a new solution to the Laplace equation
from a seed solution, but if we apply it a second time we get back the original seed
solution (up to an irrelevant integration constant that we can ignore). So this auto-
Bäcklund transformation is an involution. To get further solutions we will need to
introduce a parameter.

6.3 The Bäcklund transformation for sine-Gordon
Recall that the sine-Gordon equation written in light-cone coordinates x˘ “ 1

2
pt ˘ xq is

u`´ “ ´ sinu . (6.7)

Let us try the Bäcklund transformation

pu ´ vq` “
2

a
sin

´u ` v

2

¯

pu ` vq´ “ ´2a sin
´u ´ v

2

¯

(6.8)
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where a is a (non-zero) parameter. Cross-differentiating, and recalling that sinpA ˘ Bq “

sinA cosB ˘ cosA sinB, which implies sinpA ` Bq ` sinpA ´ Bq “ 2 sinA cosB,

pu ´ vq`´ “
1

a
cos

´u ` v

2

¯

¨ pu ` vq´ “ ´2 cos
´u ` v

2

¯

sin
´u ´ v

2

¯

“ ´ sinu ` sin v

pu ` vq´` “ ´a cos
´u ´ v

2

¯

¨ pu ´ vq` “ ´2 cos
´u ´ v

2

¯

sin
´u ` v

2

¯

“ ´ sinu ´ sin v .

Adding and subtracting, we find that both u and v obey the sine-Gordon equation:

u`´ “ ´ sinu (6.9)

v`´ “ ´ sin v (6.10)

Therefore (6.8) is an auto-Bäcklund transformation for the sine-Gordon equation, for any
non-zero value of a. The extra parameter will allow us to generate multi-soliton solutions.
We will start in the next section by rederiving the one-soliton solution.

6.4 First example: the sine-Gordon soliton from the vac-
uum

Let us take the vacuum solution
v “ 0 (6.11)

as our initial (seed) solution. Then the auto-Bäcklund transformation (6.8) is

u` “
2

a
sin

u

2

u´ “ ´2a sin
u

2
.

(6.12)

We can integrate both equations by separation of variables, using the indefinite integral
ż

du

sin u
2

“ 2 log tan
u

4

up to an integration constant. We get
#

2
a
x` “ 2 log tan u

4
` fpx´q

´2ax´ “ 2 log tan u
4

` gpx`q
(6.13)

where the functions f and g are “constants” of integration. They are only constant with
respect to the variable that is integrated, but they can (and do!) depend on the other vari-
able.
Subtracting and rearranging, we get

2

a
x`

` gpx`
q “ ´2ax´

` fpx´
q . (6.14)
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The left-hand-side is only a function of x`, while the right-hand-side is only a function of
x´. Since the two sides are equal, they must therefore be equal to a constant, which we set
to be ´2c for future convenience. Hence

fpx´
q “ 2ax´

´ 2c

gpx`
q “ ´

2

a
x`

´ 2c

and so
2 log tan

u

4
“

2

a
x`

´ 2ax´
` 2c ,

that is
u “ 4 arctan

´

e
1
a
x`´ax´`c

¯

. (6.15)

Finally, we convert to px, tq coordinates:

1

a
x`

´ax´
“

1

2a
pt`xq´

a

2
pt´xq “

1

2

„ˆ

a `
1

a

˙

x ´

ˆ

a ´
1

a

˙

t

ȷ

“
1 ` a2

2a

ˆ

x ´
a2 ` 1

a2 ´ 1
t

˙

.

Defining

v :“
a2 ´ 1

a2 ` 1

ϵ :“ signpaq

γ :“
1

?
1 ´ v2

“
˚Ex

1 ` a2

2|a|

, (6.16)

the solution (6.15) generated by an auto-Bäcklund transformation of the vacuum is

upx, tq “ 4 arctan
`

eϵγpx´x0´vtq
˘

, (6.17)

where we traded the integration constant c for x0. This solution describes a kink or an
anti-kink moving at velocity v.
Properties: a ą 0: kink |a| ą 1: right-moving

a ă 0: anti-kink |a| ă 1: left-moving

a ă ´1: ´1 ă a ă 0 0 ă a ă 1 a ą 1

Right-moving Left-moving Left-moving Right-moving
anti-kink anti-kink kink kink

So the auto-Bäcklund transformation creates a kink/anti-kink from the vacuum! By vary-
ing the parameter a P Rzt0u and the integration constant x0 or c, we reproduce all the
kink and anti-kink solutions derived in section 3.2 as travelling waves.
The amazing fact is that this holds more generally: the auto-Bäcklund transformation (al-
most) always adds a kink or an anti-kink to the seed solution.3 (The only exception is if

3Which of the two is added depends on the seed. More about this later.
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one tries to add a soliton with the same velocity as one already present.) Therefore we can
think of the auto-Bäcklund transformation as a solution-generating technique which
“adds” kinks or anti-kinks.
We will use the following graph to denote the action of a Bäcklund transformation with
parameter a and integration constant c on a seed solution u1, which adds a kink or anti-
kink and generates the new solution u2:

u1 u2
a

c

We can add a kink/anti-kink wherever we like (by choosing c) and with whatever velocity
we like (by choosing a). For example

u0 u1 u2 u3
a1

c1

a2

c2

a3

c3

adds three kinks/anti-kinks to the seed solution u0.
The problem with this is that the integrations get harder and harder as we keep adding
solitons. Luckily, a nice theorem tells us that, having found one-soliton solutions, we can
obtain multi-soliton solutions without doing any further integrals.

6.5 The theorem of permutability
Let’s apply the Bäcklund transformation twice, with parameters a1 and a2, in the two pos-
sible orders:

u0

u1

u2

u3

u4

a1

a2

a1

a2

The final results u3 and u4 both look like the seed solution u0 with two added solitons,
with parameters a1 and a2. Could they actually be the same solution? The answer is yes,
according to the following theorem:

THEOREM (Bianchi 1902):
For any u1 and u2, the integration constants in the second Bäcklund transformations,
which generate u3 and u4, can be arranged so that u3 and u4 are equal.

In other words, the a1 and a2 BT’s can be made to commute. Diagrammatically:
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u0

u1

u2

u3

a1 a2

a2 a1

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement
makes intuitive sense, given the soliton content of u3 and u4.
This result has a nice application. We have two ways of getting to u3 from u0: either
through u1 or through u2. By comparing these two ways we will be able to get rid of
all derivatives in the Bäcklund transformations and thereby obtain an algebraic relation
between the four solutions u0, u1, u2, u3.
Let’s start by considering the B` parts of the transformations, and let’s look at the upper
route first:

u0

u1

u3

a1 a2

We have

pu1 ´ u0q` “
2

a1
sin

u1 ` u0
2

pu3 ´ u1q` “
2

a2
sin

u3 ` u1
2

.
(6.18)

Adding the two equations to cancel u1 out in the left-hand side, we get

pu3 ´ u0q` “
2

a1
sin

u1 ` u0
2

`
2

a2
sin

u3 ` u1
2

. (6.19)

For the lower route

u0

u2

u3
a2 a1

we swap a1 Ø a2, u1 Ø u2 and get

pu3 ´ u0q` “
2

a2
sin

u2 ` u0
2

`
2

a1
sin

u3 ` u2
2

. (6.20)

We have found two different expressions for pu3 ´ u0q`. Equating them, we obtain an
algebraic relation between u0, u1, u2, u3:
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1

a1
sin

u1 ` u0
2

`
1

a2
sin

u3 ` u1
2

“
1

a2
sin

u2 ` u0
2

`
1

a1
sin

u3 ` u2
2

. (6.21)

This is very useful: for example, starting from u0 equal to the vacuum and two one-soliton
solutions u1, u2, we can generate a 2-soliton solution u3 algebraically. We can then iter-
ate the procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and
so forth. What we have found is akin to a “non-linear superposition principle”: the
Bäcklund transformation and the permutability theorem provide us with a machinery to
“add” solutions of a non-linear equation!
To check that this procedure is consistent, let’s see what happens for the B´ part of the
Bäcklund transformations. For the upper route

u0

u1

u3

a1 a2

we have

pu1 ` u0q´ “ ´2a1 sin
u1 ´ u0

2

pu3 ` u1q´ “ ´2a2 sin
u3 ´ u1

2
.

(6.22)

Subtracting the two equations we get

pu0 ´ u3q´ “ 2a2 sin
u3 ´ u1

2
´ 2a1 sin

u1 ´ u0
2

. (6.23)

For the lower route

u0

u2

u3
a2 a1

we swap again a1 Ø a2, u1 Ø u2 and get

pu0 ´ u3q´ “ 2a1 sin
u3 ´ u2

2
´ 2a2 sin

u2 ´ u0
2

. (6.24)

Equating (6.23) and (6.24), we find the algebraic relation

a2 sin
u3 ´ u1

2
´ a1 sin

u1 ´ u0
2

“ a1 sin
u3 ´ u2

2
´ a2 sin

u2 ´ u0
2

. (6.25)

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that,
let’s first rewrite (6.21) in the following form:

1

a1

´

sin
u1 ` u0

2
´ sin

u3 ` u2
2

¯

“
1

a2

´

sin
u2 ` u0

2
´ sin

u3 ` u1
2

¯

.
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Multiplying by a1a2{2 and using the identity sinA ˘ sinB “ 2 sin A˘B
2

cos A¯B
2

, this be-
comes

a2 sin
u1 ` u0 ´ u3 ´ u2

4 ������������

cos
u1 ` u0 ` u3 ` u2

4

“ a1 sin
u2 ` u0 ´ u3 ´ u1

4 ������������

cos
u2 ` u0 ` u3 ` u1

4
(6.26)

where we are allowed to simplify the common cosine factor in the two sides because the
argument is a function of x and t which is generically different from π{2 modulo π.
Similarly, (6.25) can be rearranged as

a1

´

sin
u3 ´ u2

2
` sin

u1 ´ u0
2

¯

“ a2

´

sin
u3 ´ u1

2
` sin

u2 ´ u0
2

¯

,

which upon using the same trigonometric identity as above becomes

a1 sin
u3 ´ u2 ` u1 ´ u0

4 ������������

cos
u3 ´ u2 ´ u1 ` u0

4

“ a2 sin
u3 ´ u1 ` u2 ´ u0

4 ������������

cos
u3 ´ u1 ´ u2 ` u0

4
(6.27)

which agrees with equation (6.26) upon simplification. So everything is consistent.
To conclude this discussion, let’s manipulate (the simplified version of) equation (6.26) a
bit further, with the aim of determining u3 given u0, u1 and u2. Letting A “ pu0 ´ u3q{4
and B “ pu1 ´ u2q{4, (6.26) becomes

a1 sinpA ´ Bq “ a2 sinpA ` Bq

ùñ a1psinA cosB ´ sinB cosAq “ a2psinA cosB ` sinB cosAq .

Dividing through by cosA cosB, we find

a1ptanA ´ tanBq “ a2ptanA ` tanBq .

ùñ pa1 ´ a2q tanA “ pa1 ` a2q tanB .

In terms of u0, u1, u2, u3, this reads

tan
u0 ´ u3

4
“
a1 ` a2
a1 ´ a2

tan
u1 ´ u2

4
, (6.28)

which is an improvement on (6.26) since u3 appears only once. Equivalently, we can write

tan
u3 ´ u0

4
“
a2 ` a1
a2 ´ a1

tan
u1 ´ u2

4
. (6.29)

Either of (6.28) or (6.29) allow us to express u3 in terms of u0, u1, u2.
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6.6 The two-soliton solution
Finally a payoff. Take the vacuum as the seed solution, i.e. u0 “ 0. Then u1 and u2 are
known from before: they are single kinks or antikinks. Equation (6.29) gives the double
Bäcklund transformed u3 as

tan
u3
4

“
a2 ` a1
a2 ´ a1

tan
u1 ´ u2

4
“
a2 ` a1
a2 ´ a1

tan u1

4
´ tan u2

4

1 ` tan u1

4
tan u2

4

, (6.30)

where we used the trigonometric identity

tanpA ´ Bq “
tanA ´ tanB

1 ` tanA ¨ tanB

for the second equality. The 1-soliton (i.e. kink or antikink) solutions are

tan
ui
4

“ eθi pi “ 1, 2q (6.31)

where

θi “
x`

ai
´ aix

´
` ci “ ϵiγipx ´ x̄i ´ vitq , (6.32)

as seen in section 6.4. Here x̄1,2 are the centres of the two solitons at t “ 0. Substituting
equation (6.31) in equation (6.30) we find the 2-soliton solution

tan
u3
4

“ µ
eθ1 ´ eθ2

1 ` eθ1`θ2
(6.33)

where
µ “

a2 ` a1
a2 ´ a1

(6.34)

REMARK:
If the two solitons have the same velocity v1 “ v2, which means

a21 ´ 1

a21 ` 1
“
a22 ´ 1

a22 ` 1
ùñ a1 “ ˘a2 ,

then µ “ 0 or 8 and the 2-soliton solution (6.33) breaks down. In particular, there is no
static 2-soliton solution! As we will see later, this is because the two solitons exert a force
on one another.
But this is too fast. We haven’t confirmed yet that equation (6.33) contains two solitons.
Let’s understand that next.

6.7 Asymptotics of multisoliton solutions
We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method
applies more generally to any multi-soliton solutions of integrable equations (e.g. the KdV
equation).
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Our goal will be to study the new solution (6.33) and identify two solitons hidden in its
asymptotics for t Ñ ¯8, namely BEFORE and AFTER the collision. Here is an example of
what the solution may look like at early times (before the collision) and at late times (after
the collision) in the case of a collision of a kink and an anti-kink:

It is not completely obvious how to find the early time and late time asymptotics analyt-
ically. If we just take t ˘ 8 with x fixed, the two solitons will be at spatial infinity and
we will miss them (unless one of the two has zero velocity, in which case we will see that
soliton). We should instead follow one or the other soliton by letting

t Ñ ˘8 with XV “ x ´ V t fixed , (6.35)

for some appropriate constant velocity V . If there is a soliton moving at velocity V in the
original px, tq coordinates, it will appear stationary in the pXV , tq coordinates. For this
reason pXV , tq is called a “comoving frame”: they are coordinates for a reference frame
which moves together with an object (e.g. a soliton) of velocity V .
Let us try this for the solution (6.33) which we obtained from a double Bäcklund trans-
formation of the vacuum. We will now use u to denote the field in the resulting solution,
which reads

tan
u

4
“ µ

eθ1 ´ eθ2

1 ` eθ1`θ2

with
µ “

a2 ` a1
a2 ´ a1

, θi “ ϵiγipx ´ vit ´ x̄iq .

If we switch to a comoving frame with velocity V , the exponents read

θi “ ϵiγipx ´ V t ` V t ´ vit ´ x̄iq

“ ϵiγipXV ´ pvi ´ V qt ´ x̄iq ,
(6.36)

where we see the appearance of the “relative velocity” vi ´ V , that is the velocity in the
comoving frame.
For each soliton we now have three cases for the limit (6.35), corresponding to a positive,
zero or negative relative velocity for the soliton:

Case t Ñ ´8 t Ñ `8

V ă vi θi Ñ `ϵi8 θi Ñ ´ϵi8
V “ vi θi finite θi finite
V ą vi θi Ñ ´ϵi8 θi Ñ `ϵi8

Recall that ϵi “ ˘1 is a sign, and γi ą 0 so it does not affect the sign of θi in the limit.
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This tells us that if V ‰ v1, v2, then θ1, θ2 Ñ ˘8 as |t| Ñ 8. This implies that4

tan
u

4
“ µ

eθ1 ´ eθ2

1 ` eθ1`θ2
Ñ ˘8 or 0 .

So u{4 tends to an integer multiple of π{2, which means that u tends to an integer multiple
of 2π: the field is in the vacuum. The conclusion is that if we go off to infinity in the original
px, tq plane in any direction apart from dx

dt
“ v1, v2, then u Ñ 2πn for some n P Z.

If instead V “ v1 or v2, we need to study the limit more carefully. We will consider a single
case a1, a2 ą 0, leaving the other cases for the exercises. Since a1 ‰ a2 for the solution to
exist, let us take without loss of generality

a2 ą a1 ą 0 ùñ v2 ą v1 , ϵ1 “ ϵ2 “ 1 , µ ą 0 .

Consider V “ v1 first, or "let’s ride the slower soliton". In the comoving frame the expo-
nents θi read

θ1 “ γ1px ´ v1t ´ x̄1q “ γ1pXv1 ´ x̄1q

θ2 “ γ2px ´ v2t ´ x̄2q “ γ2pXv1 ´ pv2 ´ v1qt ´ x̄2q
(6.37)

so θ1 stays finite, whereas θ2 Ñ ¯8 as t Ñ ˘8 with Xv1 fixed (I used that v2 ą v1).
One of the two limits is easier to analyse, so let’s start with that:

1. t Ñ `8:
In this limit θ2 Ñ ´8, so eθ2 Ñ 0 and

tan
u

4
“ µ

eθ1 ´ eθ2

1 ` eθ1`θ2

Ñ µeθ1

“ µeγ1pXv1´x̄1q

“ e
γ1

´

x´v1t´x̄1` 1
γ1

log µ
¯

,

where in the last line we have expressed the finite limit in the comoving coordinates
in terms of the original px, tq coordinates.
This is a kink, the centre of which moves with velocity v1 along the trajectory

x “ v1t ` x̄1 ´
1

γ1
log

a2 ` a1
a2 ´ a1

. (6.38)

The last term is negative and represents a backward shift in space of the slower
soliton compared to where it would have been at the same time in the absence of the
faster soliton. (Equivalently, we can view this as a time delay for reaching a fixed
value of x.)

4According to the signs of the limits of θ1 and θ2, the limit of tanpu{4q is as follows:

`` : tanpu{4q Ñ 0

`´ : tanpu{4q Ñ `8

´` : tanpu{4q Ñ ´8

´´ : tanpu{4q Ñ 0 .
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2. t Ñ ´8:
In this limit θ2 Ñ `8, so eθ2 Ñ `8 and it is rather e´θ2 that tends to zero. So we
should divide through by eθ2 before taking the limit:

tan
u

4
“ µ

eθ1 ´ eθ2

1 ` eθ1`θ2

“ µ
eθ1´θ2 ´ 1

e´θ2 ` eθ1

Ñ ´µe´θ1 .

Recalling that tan
`

A ˘ π
2

˘

“ ´ 1
tanA

, this means that

tan
´u

4
˘
π

2

¯

Ñ µ´1eθ1

“ e
γ1

´

x´v1t´x̄1´ 1
γ1

log µ
¯

.

Therefore

u
ˇ

ˇ

tÑ´8, Xv1 finite « ˘2π ` 4 arctan e
γ1

´

x´v1t´x̄1´ 1
γ1

log µ
¯

.

(The ˘ sign ambiguity can be fixed by continuity. It turns out that ´2π is correct.)
This is a kink, the centre of which moves with velocity v1 along the trajectory

x “ v1t ` x̄1 `
1

γ1
log

a2 ` a1
a2 ´ a1

. (6.39)

The last term is positive and represents a forward shift of the slower soliton com-
pared to where it would have been at the same time in the absence of the faster
soliton. (Equivalently, we can view this as a time advancement.)

Comparing the trajectories at early times (t Ñ ´8) and at late times (t Ñ `8), we see
that the collision with the faster soliton shifts the slower soliton backwards by

2

γ1
log

a2 ` a1
a2 ´ a1

,

as shown in the following figure:
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We say that the slower soliton has a negative phase shift:

PHASE SHIFTslower “ ´
2

γ1
log

a2 ` a1
a2 ´ a1

(6.40)

We conclude that the slower kink emerges from the collision with the same shape and
velocity, but delayed by a finite phase shift.
Now consider V “ v2, or "let’s ride the faster soliton". The calculation is similar to the
above, so I’ll let you work out the details in [Ex 35]. If you do this exercise you will find
a surprise: even though a2 ą 0, so that acting on the vacuum with the a2-Bäcklund trans-
formation produces a kink, the component of the two-soliton solution (6.33) that moves at
velocity v2 is actually an anti-kink! So, even though the Bäcklund transformation always
adds a soliton, the nature of the added soliton depends on what is already there.
The shifts have opposite signs to before, as shown below.

This results in a positive phase shift:

PHASE SHIFTfaster “ `
2

γ2
log

a2 ` a1
a2 ´ a1

. (6.41)

Putting everything together, we have the following picture for the collision of the kink and
the anti-kink:

Figure 6.1: Schematic summary of the kink-antikink solution.
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These features can be seen in Fig. 6.2, a plot of the exact kink-antikink solution with pa-
rameters a1 “ 1.1, a2 “ 2, and Fig. 6.3, a contour plot of the energy density of the same
solution which clearly shows the trajectories of the kink and the anti-kink. See also here
and the course webpage for some animations of the time evolution.

Figure 6.2: 3d plot of the kink-antikink solution for a1 “ 1.1, a2 “ 2.

Figure 6.3: Contour plot of the energy density of the a1 “ 1.1, a2 “ 2 solution.

REMARK:
From Fig. 6.3 we see that the kink and the anti-kink appear to attract each other, acceler-
ating towards each other as the moment of interaction approaches.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_animation.gif
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The remaining cases for the signs of a1 and a2 can be analysed similarly: see [Ex 36]
and [Ex 37]. The situation for a 2-soliton solution that contains two kinks is depicted
in Fig. 6.4.5 (Given that the two kinks are indistinguishable apart from their velocities,
the way that the trajectories are joined together in the picture on the right might seem
arbitrary. However a look at the energy-density plot on the next page should convince
you that the option shown is the physically-correct choice.)

Figure 6.4: Schematic summary of the kink-kink solution.

Looking at the plots of the exact solution for a1 “ 0.6, a2 “ ´1.5 shown in Figs. 6.5 and
6.6 below, we see that, in contrast to the kink-antikink case, two kinks appear to repel each
other.

Figure 6.5: 3d plot of the kink-kink solution for a1 “ 0.6, a2 “ ´1.5.

5The solution that contains two anti-kinks can be obtained by sending u ÞÑ ´u.
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Figure 6.6: Contour plot of the energy density of the a1 “ 0.6, a2 “ ´1.5 solution.

INTERPRETATION:
ATTRACTIVE FORCE between kink and anti-kink
REPULSIVE FORCE between kink and kink
REPULSIVE FORCE between anti-kink and anti-kink

So kinks and anti-kinks behave in a similar way to elementary particles with electric
charge, such as the electron and the positron. The role of electric charge is played here
by the topological charge:

Solitons with like topological charges repel
Solitons with opposite topological charges attract.

It is quite amazing that lump of fields can behave so similarly to pointlike elementary par-
ticles. In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four
spacetime dimensions to model the behaviour of protons and neutrons in atomic nuclei.
This is a very far-reaching idea, which unfortunately we don’t have time to investigate
further in this module.
We have seen that kinks and anti-kinks attract each other. This raises a natural question:
can they stick together, or in physics parlance “form a bound state”? The answer is yes,
and the resulting bound state of a kink and an anti-kink is the “breather”, to which we now
turn.
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6.8 The breather
Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, rewritten here for
convenience:

u “ 4 arctan

ˆ

a2 ` a1
a2 ´ a1

eθ1 ´ eθ2

1 ` eθ1`θ2

˙

.

This is a solution of the sine-Gordon equation for any values of the Bäcklund parameters a1
and a2 (and integration constants c1 and c2), even complex ones. However, the sine-Gordon
field u is an angle and so it must be real. There are two ways to achieve this:6

1. a1, a2 (and c1, c2) P R: this is what we have considered so far;
2. a2 “ a˚

1 (and c2 “ c˚
1 ): this is what we will consider next. But let’s first check that

the corresponding u is real:

u˚
“

„

4 arctan

ˆ

a2 ` a1
a2 ´ a1

eθ1 ´ eθ2

1 ` eθ1`θ2

˙ȷ˚

“ 4 arctan

˜

a˚
2 ` a˚

1

a˚
2 ´ a˚

1

eθ
˚
1 ´ eθ

˚
2

1 ` eθ
˚
1 `θ˚

2

¸

“ 4 arctan

ˆ

a1 ` a2
a1 ´ a2

eθ2 ´ eθ1

1 ` eθ2`θ1

˙

“ 4 arctan

ˆ

a2 ` a1
a2 ´ a1

eθ1 ´ eθ2

1 ` eθ1`θ2

˙

“ u .

To get to the second line we used the fact that arctanpzq and ez are complex analytic
functions, therefore rarctanpzqs

˚
“ arctanpz˚q and rezs

˚
“ ez

˚ . To get to the third
line we used θ2 “ θ˚

1 , which follows from a2 “ a˚
1 and c2 “ c˚

1 .
Let us then consider option 2 and try a solution with arbitrary a1 “ a˚

2 ” a and with
c1 “ c2 “ 0 for simplicity. Define

a1 “ a “ A ` iB “ |a|eiφ

a2 “ ā “ A ´ iB “ |a|e´iφ
(6.42)

where A “ Re paq, B “ Im paq, φ “ argpaq, and let

θ1 “ α ` iβ

θ2 “ α ´ iβ
, (6.43)

with α and β real functions of x, t to be determined below. Then

tan
u

4
“

|a|pe´iφ ` eiφq

|a|pe´iφ ´ eiφq
¨
eα`iβ ´ eα´iβ

1 ` e2α

“
2 cosφ

´2i sinφ
¨
2i sin β

2 coshα

6To be more precise, one can also add to the integration constants c1 and c2 an integer multiple of πi.
This has the effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is
even.
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which simplifies to

tan
u

4
“ ´

cosφ

sinφ

sin β

coshα
. (6.44)

To finish the calculation, let’s determine the functions α, β in terms of the coordinates x, t
and the parameters |a| and φ:

α ` iβ “ θ1 “
1

a
x`

´ ax´

“
ā

|a|2
x`

´ ax´
“
A ´ iB

|a|2
x`

´ pA ` iBqx´ .
(6.45)

Therefore

α “ Re pθ1q “
A

|a|2
x`

´ Ax´

“
A

|a|

ˆ

1

|a|
x`

´ |a|x´

˙

.

We can now do similar manipulations to those after equation (6.15) to find

α “
A

|a|
γpx ´ vtq “

(6.42)
cosφ ¨ γpx ´ vtq , (6.46)

where

v “
|a|2 ´ 1

|a|2 ` 1

γ “
1

?
1 ´ v2

“
1 ` |a|2

2|a|

. (6.47)

˚ EXERCISE: Show that similarly [Ex 38]

β “
B

|a|
γpvx ´ tq “

(6.42)
sinφ ¨ γpvx ´ tq . (6.48)

Substituting these expressions in (6.44) we find the breather solution

tan
u

4
“ ´ cotφ ¨

sinpsinφ ¨ γpvx ´ tqq

coshpcosφ ¨ γpx ´ vtqq
. (6.49)

REMARKS:
• The ratio of the prefactor and the denominator in the RHS,

´ cotφ

coshpcosφ ¨ γpx ´ vtqq
,

defines an envelope function moving at the group velocity v. Recall that |v| ă 1,
where 1 is the speed of light, so this is consistent with the laws of special relativity.
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• The numerator
sinpsinφ ¨ γpx ´ vtqq

defines a carrier wave which moves at the phase velocity 1{v.

To see why the solution (6.49) is called a breather, let us set |a| “ 1, or equivalently v “ 0.
(This can be achieved by switching to a comoving frame if v ‰ 0.) Then the breather
simplifies to

tan
u

4
“ cotφ ¨

sinpsinφ ¨ tq

coshpcosφ ¨ xq
(6.50)

and the field looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink,
with time period

τ “
2π

| sinφ|
. (6.51)

Figure 6.7: Sketch of the v “ 0 breather solution.

Fig. 6.7 shows a sketch of the v “ 0 breather solution, while Figs. 6.8 and 6.9 show one such
solution, for φ “ π{10. Its period is approximately 20, as predicted by equation (6.51). See
also this link, or the course webpage, for an animation of the time evolution.
One can show7 that the v “ 0 breather has energy Ebreather “ 16 cosφ. Since a static kink
and a static anti-kink have energy Ekink “ Eantikink “ 8 , the binding energy of the kink

7This is a good but technical exercise, which is not in the problem sheet.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_animation.gif
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Figure 6.8: 3d plot of the breather solution for v “ 0 and φ “ π{10.

Figure 6.9: Contour plot of the energy density of the v “ 0, φ “ π{10 breather.

and the anti-kink in the breather is

Ebinding “ Ebreather ´ Ekink ´ Eantikink “ ´16p1 ´ cosφq .

This is negative as expected: the binding lowers the energy of the solution.
As φ Ñ 0, the binding energy tends to zero. It is immediate to see from equation (6.51) that
the time period of the breather diverges: τ „ 1{|φ| Ñ 8 . The spatial size of the breather
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also diverges [Ex 39]:
xmax „ ´ log |φ| Ñ 8 .

In this limit the kink and the antikink become more and more loosely bound. The resulting
solution

u “ 4 arctan pt ¨ sechpxqq

describes a kink and an anti-kink starting infinitely far away from one another and doing
half an oscillation. Since sechpxq « 2e´|x| as |x| Ñ 8, the kink and the anti-kink do not
follow linear trajectories as t Ñ ˘8. Rather, the asymptotic trajectories of the kink and
the anti-kink are given by |x| „ log |t|.


