Chapter 6

Biacklund transformations

The main reference for this chapter is §5.4 of [5]).

So far, we have constructed solutions for moving solitons only as travelling waves, which
describe the propagation of a single soliton. Our next goal will be to construct analytic
solutions for multiple colliding solitons. In these cases it won’t be possible to reduce the
partial differential equation to an ordinary differential equation, so the existence of such
exact solutions is much more surprising. The method that we will use in this chapter is a
solution-generating technique called the Backlund transformation.

The method was introduced in the late 19th century by the Swedish mathematician Albert
Victor Backlund and by the Italian mathematician Luigi Bianch to map between pairs
of surfaces in three-dimensional space. The sine-Gordon equation appears in this context
when one considers hyperboloids, which are surfaces of negative curvature.

There are two main uses of the Backlund transformation:

1. To generate solutions of a difficult PDE from solutions of a possibly simpler
PDE,;

2. To generate new solutions of a given PDE from already known solutions of
the same PDE.

We will mostly be interested in use 2, but [Ex 31-33] from the third problem sheet show
some examples of use 1. Our final goal in this chapter will be to obtain multi-soliton solu-
tions of the sine-Gordon equation.

6.1 Definition

Consider two functions u and v, and two differential equations

0
0

where P and () are two differential operators.

lwho, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after
whom the Bianchi identities in differential geometry and general relativity are named.
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If there is a pair of relations (which could be differential equations)

Ri[u,v] =0, Rslu,v] =0 (6.3)

between v and v such that

- If Plu] = 0, ie , then can be solved for v, to give a solution of ,
Qv] = 0;

-IfQv] = 0, ie , then can be solved for u, to give a solution of ,
Plu] = 0;

then (6.3) is called a Backlund transformation (BT). If furthermore P = (), so that the
two differential equations are identical, then (6.3) is called an auto-Backlund transfor-
mation (aBT).

This is useful if (6.3) is easier to solve than (6.1) or (6.2). Then we can use (6.3) to generate
solutions of the harder equation from solutions of the easier equation. If P = (), we can
start from a simple seed solution (e.g. © = 0) to generate new non-trivial solutions.

Vocabulary:

e (6.1) and (6.2) are “integrability conditions” for the Backlund transformation (6.3).
e (6.3) can be integrated for v if the integrability condition P[u] = 0 is satisfied.
e (6.3) can be integrated for v if the integrability condition Q[v] = 0 is satisfied.

6.2 A simple example

Take the two-dimensional Laplace operator P = Q = 02 + 55 in 1} and :
Plu] = ugy + uy, =0 (6.4)
Qlv] = vy + vy, =0

and for the Backlund transformation (6.3)

Ri[u,v] = uy —v, =0

6.6
Rolu,v] = uy +v, =0 (6.6)

Let us check that (6.4)-(6.5) are integrability conditions for (6.6). Differentiating with

respect to x and y and adding or subtracting we find

0= 40,1 + 0yRy = +gy — Uy + Uyy + Ugy = Ugy + Uy
0= =0y + 0z Ro = —Uyy + Vyy + Uyy + Vg = Vgz + Uy,

therefore the relations imply (6.4) and (6.5) | This shows that is an auto-Backlund
transformation for the two-dimensional Laplace equation.

“Note: in this example we don’t even need to use the other differential equation. This is not always the
case.
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EXAMPLE:

v(x,y) = 2xy solves the Laplace equation (6.5). Let us substitute this v into the aBT to
find another solution u of the same equation:

Uy = v, = 27 u=1z*+ f(y)
—
Uy = —Vp = =2y fly)=-2y = [ly)=-y"+c,
so we find the function u(z,y) = x® — y* + ¢, where c is a constant. It is immediate to

check that this u solves the Laplace equation (6.4).

The equations R;[u,v] = Rs[u,v] = 01in are nothing but the Cauchy-Riemann
equations for the holomorphic (= complex analytic) function w = u+iv of the complex
variable 2 = x + iy. In the example above, w(z) = 2% + ¢. The equations P[u] = 0 and
Q[v] = 01in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic
function are harmonic, that is, they solve the Laplace equation. Two such functions v and
v are often called harmonic conjugate of each other.

REMARKS:

1. Given v, the Backlund transformation is a system of two equations for u. Gener-

ically there won’t be any solutions for this system. For example, if we pick v = 22,

then the system is
Uy =0y =0
Uy = —Vp = —20

which has no solutions for u. But v = z? doesn’t solve (6.5)! The integrability
condition (6.5) is what guarantees that the system can be consistently solved
for u.

2. This auto-Backlund transformation generates a new solution to the Laplace equation
from a seed solution, but if we apply it a second time we get back the original seed
solution (up to an irrelevant integration constant that we can ignore). So this auto-
Backlund transformation is an involution. To get further solutions we will need to
introduce a parameter.

6.3 The Backlund transformation for sine-Gordon

Recall that the sine-Gordon equation written in light-cone coordinates z* = %(t + ) is

’u+, = —sinu‘. (6.7)

Let us try the Backlund transformation

( ) 2 . <u+v>
U— V). = —sin
* a 2

u—v
“20sin ()
a S11 5

(u+v)_
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where a is a (non-zero) parameter. Cross-differentiating, and recalling that sin(A + B) =
sin A cos B + cos A sin B, which implies sin(A + B) + sin(A — B) = 2sin A cos B,

(u—v);- écos (U;F’U> - (u+v)_ = —2cos (ugw> sin (u;v>

= —sinu + sinv

(u+v)—+ = —QaCos (u;U> ) (U—v)+ — _9cos (u;v> sin <u—2|—v>

= —sinu — sinwv .

Adding and subtracting, we find that both u and v obey the sine-Gordon equation:

’u+_ = —sinu‘ (6.9)

’m, = —sinv‘ (6.10)

Therefore is an auto-Backlund transformation for the sine-Gordon equation, for any
non-zero value of a. The extra parameter will allow us to generate multi-soliton solutions.
We will start in the next section by rederiving the one-soliton solution.

6.4 Firstexample: the sine-Gordon soliton from the vac-
uum

Let us take the vacuum solution
(6.11)

as our initial (seed) solution. Then the auto-Backlund transformation is

2 . u
Uy = —sin —
a2 (6.12)
U_ = —2as8in — .
2

We can integrate both equations by separation of variables, using the indefinite integral

f duu = 21ogtan%

S1n 5

up to an integration constant. We get

{%x* = 2logtan § + f(z7)

6.13
—2ax~ = 2logtan § + g(x™) (6.13)

where the functions f and g are “constants” of integration. They are only constant with
respect to the variable that is integrated, but they can (and do!) depend on the other vari-
able.

Subtracting and rearranging, we get

%;p* +g(xt) = —2ax™ + f(x7) . (6.14)
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The left-hand-side is only a function of z ™, while the right-hand-side is only a function of
2. Since the two sides are equal, they must therefore be equal to a constant, which we set
to be —2c for future convenience. Hence

f(z7) =2azx™ —2¢

2
+ +
=——z" =2
g(x™) T c
and so
u 2 _
2logtan — = —x" — 2ax” + 2c,
4 a
that is

(6.15)

a2+1t
-]

14
u = 4 arctan <eax ax +C> .

Finally, we convert to (z,t) coordinates:

1 1 a 1 1 1 1+ a?
“xt—axrT = —(t ——(t—x) = = - — ——)t| =
~a’—az 2@( +x) 2( x) 5 {(ajt a) x <a a) ] o

Defining

a’ -1

T e

€ := sign(a) , (6.16)
. 1 B 1+ a?

T T2 e 20

the solution (6.15) generated by an auto-Béacklund transformation of the vacuum is

u(z,t) = 4arctan (eﬂ(x’“’”t)) , (6.17)

where we traded the integration constant ¢ for xy. This solution describes a kink or an
anti-kink moving at velocity v.

Properties: a > 0: kink la| > 1:  right-moving
a < 0: anti-kink la| < 1:  left-moving
a< —1: -1<a<0 O<ax<l1 a>1

Right-moving
anti-kink

Left-moving
anti-kink

Left-moving

kink

Right-moving
kink

—> -

So the auto-Backlund transformation creates a kink/anti-kink from the vacuum! By vary-
ing the parameter @ € R\{0} and the integration constant x, or ¢, we reproduce all the
kink and anti-kink solutions derived in section [3.2|as travelling waves.

The amazing fact is that this holds more generally: the auto-Backlund transformation (al-
most) always adds a kink or an anti-kink to the seed solution (The only exception is if

$Which of the two is added depends on the seed. More about this later.
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one tries to add a soliton with the same velocity as one already present.) Therefore we can
think of the auto-Bécklund transformation as a solution-generating technique which
“adds” kinks or anti-kinks.

We will use the following graph to denote the action of a Backlund transformation with
parameter a and integration constant c on a seed solution u;, which adds a kink or anti-
kink and generates the new solution us:

a
c

We can add a kink/anti-kink wherever we like (by choosing c) and with whatever velocity
we like (by choosing a). For example

adds three kinks/anti-kinks to the seed solution .

I

The problem with this is that the integrations get harder and harder as we keep adding
solitons. Luckily, a nice theorem tells us that, having found one-soliton solutions, we can
obtain multi-soliton solutions without doing any further integrals.

6.5 The theorem of permutability

Let’s apply the Backlund transformation twice, with parameters a; and as, in the two pos-
sible orders:

The final results u3 and u4 both look like the seed solution wug with two added solitons,
with parameters a; and as. Could they actually be the same solution? The answer is yes,
according to the following theorem:

THEOREM (Bianchi 1902):

For any u; and us, the integration constants in the second Biacklund transformations,
which generate u3 and uy4, can be arranged so that us and u4 are equal.

In other words, the a; and as BT’s can be made to commute. Diagrammatically:
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a1 e a2

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement
makes intuitive sense, given the soliton content of us and uy.

This result has a nice application. We have two ways of getting to us from ug: either
through u; or through us. By comparing these two ways we will be able to get rid of
all derivatives in the Backlund transformations and thereby obtain an algebraic relation
between the four solutions wug, w1, us, us.

Let’s start by considering the 0, parts of the transformations, and let’s look at the upper

route first:
ax e az
We have
2 . up+ug
(41 — o)y = — sin
“ 2 (6.18)
( ) 2 . us+u ’
Uz — Up); = — sin
3T W)y = 7
Adding the two equations to cancel u; out in the left-hand side, we get
2w +tu 2 uz +u
(us — Up)s = — sin ————> + — sin ——— (6.19)
aq 2 a9 2
For the lower route
@ as a @
we swap a; <> ag, U3 <> Uy and get
2 . us+tu 2 usz +u
(us — ug)4 = — sin ———> 4 — sin ———— (6.20)
a9 2 ay 2

We have found two different expressions for (u3 — ug);. Equating them, we obtain an

algebraic relation between wug, uy, us, us:
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1.
— sin
a1

U1 + Ug
2

1

ag

U3 + Uy

2

1

= —sin

a2

2

U + Ug

1

a1

Us + U2

55

(6.21)

This is very useful: for example, starting from 1, equal to the vacuum and two one-soliton
solutions uy, u2, we can generate a 2-soliton solution ug algebraically. We can then iter-
ate the procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and
so forth. What we have found is akin to a “non-linear superposition principle”: the
Bécklund transformation and the permutability theorem provide us with a machinery to
“add” solutions of a non-linear equation!

To check that this procedure is consistent, let’s see what happens for the ¢_ part of the
Backlund transformations. For the upper route

aq @ Qs

we have

Subtracting the two equations we get

.U — U
(u1 + ug)— = —2a4 sin
.Uz — U
(ug + u1)- = —2agsin
.Uz — Uy .U — U
(ug — ug)— = 2ay sin — 2a, sin

For the lower route

we swap again a; < ag, u; <> Uz and get

. - .Uz — U
(up — uz)_ = 2ay sin — 2as8in
Equating (6.23) and (6.24), we find the algebraic relation
.Uz — U .U — U Uz — U .U — U
as sin — ay sin = qp sin —azsin—

(6.22)

(6.23)

(6.24)

(6.25)

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that,
let’s first rewrite (6.21) in the following form:

a1

1(.
— | sin

’LL1+U0 .
— S1

U3+U2

)

1(.
= — (sin

Q2

UQ—l-U() .
— S1

U3+U1

2
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Multiplying by ajas/2 and using the identity sin A + sin B = 2sin £22 A+B coS A*—B this be-
comes
CLQSiDU1 +UOQU3—UQ Osu1 +UO%M
:alsiHUQ+uO—U3—U1 OSUQ+UOM
4 4
(6.26)

where we are allowed to simplify the common cosine factor in the two sides because the
argument is a function of x and ¢ which is generically different from 7/2 modulo 7.

Similarly, (6.25) can be rearranged as
Uy — Uo) < .
= ay (sin
5 2

which upon using the same trigonometric identity as above becomes

Uz — U Uz — Uy Ug — Ug

+ sin + sin

).

a; (sin

Uz — Ug + U1 — Uyg

Uz — Uy — U+
08

ai sin

4

4

Uz — U + Uz — U

Uz — Uy —Us+ Ty

= a9 sin

4

COS

4

(6.27)
which agrees with equation (6.26) upon simplification. So everything is consistent.

To conclude this discussion, let’s manipulate (the simplified version of) equation (6.26) a
bit further, with the aim of determining us given wg, u; and us. Letting A = (ug — u3)/4

and B = (u; — u2)/4, becomes
a;sin(A — B) = agsin(A + B)

—  ay(sinAcos B —sinBcos A) = ay(sin Acos B+ sin Bcos A) .

Dividing through by cos A cos B, we find

ai(tan A — tan B) = as(tan A + tan B) .

= (a; —ag)tan A = (a; + az)tan B .

In terms of ug, w1, us, us, this reads

tan

Up — U3

ai + as

Uy — U2

4

ap — aq

4

, (6.28)

which is an improvement on since u3 appears only once. Equivalently, we can write

Either of (6.28) or (

tan

U3z — U

U — U2

4

as + aq
= tan

Gz —ay

4

(6.29)

6.29) allow us to express ug in terms of wg, uy, usg.
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6.6 The two-soliton solution

Finally a payoff. Take the vacuum as the seed solution, i.e. uy = 0. Then u; and u, are
known from before: they are single kinks or antikinks. Equation (6.29) gives the double
Bécklund transformed us as

U3 a2+(11t up —us  az+ap tan g —tan 2
an =

tan — = = , 6.30
4 as — aq 4 az —ay 1 + tan 7 tan 2 (6.30)
where we used the trigonometric identity
tan A — tan B
tan(A — B) =
( ) l1+tanA-tan B
for the second equality. The 1-soliton (i.e. kink or antikink) solutions are
'Ll/.
tanzZ =ell (i=1,2) (6.31)
where
o+
‘91' = — — aixf + C;, = 62’}/2(37 — flfi — UJ) y (632)
a;

as seen in section Here 7, 5 are the centres of the two solitons at ¢ = 0. Substituting

equation (6.31) in equation (6.30) we find the 2-soliton solution

3 e — b2
tan 1 =M T (6.33)
where
+
p=2219 (6.34)
a2 —
REMARK:

If the two solitons have the same velocity v; = vy, which means

2 2

a2+1 a3+1

a1 = ia??

then p© = 0 or oo and the 2-soliton solution (6.33) breaks down. In particular, there is no
static 2-soliton solution! As we will see later, this is because the two solitons exert a force
on one another.

But this is too fast. We haven’t confirmed yet that equation (6.33) contains two solitons.
Let’s understand that next.

6.7 Asymptotics of multisoliton solutions

We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method
applies more generally to any multi-soliton solutions of integrable equations (e.g. the KdV
equation).
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Our goal will be to study the new solution and identify two solitons hidden in its
asymptotics for ¢ — Foo, namely BEFORE and AFTER the collision. Here is an example of
what the solution may look like at early times (before the collision) and at late times (after
the collision) in the case of a collision of a kink and an anti-kink:

antikine k\‘vx\p_
EFORE ~~d A g
8 i

kink:  awtikunle

AFTER ¢ ‘\ 54

It is not completely obvious how to find the early time and late time asymptotics analyt-
ically. If we just take ¢ &+ o0 with z fixed, the two solitons will be at spatial infinity and
we will miss them (unless one of the two has zero velocity, in which case we will see that
soliton). We should instead follow one or the other soliton by letting

t—+o  with Xy =z—Vt fixed|, (6.35)

for some appropriate constant velocity V. If there is a soliton moving at velocity V' in the
original (z,t) coordinates, it will appear stationary in the (X, ) coordinates. For this
reason (Xy,t) is called a “comoving frame”: they are coordinates for a reference frame
which moves together with an object (e.g. a soliton) of velocity V.

Let us try this for the solution (6.33) which we obtained from a double Backlund trans-
formation of the vacuum. We will now use u to denote the field in the resulting solution,
which reads

¢ u el — 02
Wy T et
with N
Gz — a1 _
o= y 92 = EZ’}Q(ZL’ — Uit — Z'Z) .
Ao —

If we switch to a comoving frame with velocity V, the exponents read

07; = 61’}/@(1‘ — Vt + Vt — Uit — ZZ‘Z)

6.36
= e%(Xv — (v = V)t —7y), (636
where we see the appearance of the “relative velocity” v; — V/, that is the velocity in the

comoving frame.

For each soliton we now have three cases for the limit (6.35), corresponding to a positive,
zero or negative relative velocity for the soliton:

Case ‘ t— —0 ‘ t— 4o
V< (% 02' — +¢€;00 02 — —¢€;00
V =wv; | 6; finite f; finite
V > V; 92 — —¢€;00 91 — +¢€;00

Recall that ¢; = +1 is a sign, and y; > 0 so it does not affect the sign of 6; in the limit.
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This tells us that if V' # vy, v, then 6,0 — +0 as |t| — oo. This implies tha

tan = or0
an Z = um — o0 oru.
So u/4 tends to an integer multiple of /2, which means that u tends to an integer multiple
of 27 the field is in the vacuum. The conclusion is that if we go off to infinity in the original
dx

(z,t) plane in any direction apart from 5 = vy, vy, then v — 27n for some n € Z.

Ifinstead V' = v; or vy, we need to study the limit more carefully. We will consider a single
case ay, as > 0, leaving the other cases for the exercises. Since a; # a5 for the solution to
exist, let us take without loss of generality

as >a; >0 — Vo >v1, € =€6=1, u>0.

Consider V' = vy first, or "let’s ride the slower soliton". In the comoving frame the expo-
nents 6; read

by = n(x —unt—z1) = 1(Xy, — 1)

6.37
02 = Yo(x — Vot — Ta) = 12( Xy, — (V2 — V1)t — Ta) (637)

so 0 stays finite, whereas 05 — Foo ast — +oo with X, fixed (I used that vy, > vy).

One of the two limits is easier to analyse, so let’s start with that:

1. t — +oo:
In this limit 6, — —o0, so e?> — 0 and
U e — ef2
tan 1° ,um
— #691
- Iue'u(le*i“l)

74 L
_ 671 (17—1)1t—351-h/1 10g#) 7

where in the last line we have expressed the finite limit in the comoving coordinates
in terms of the original (z,t) coordinates.

This is a kink, the centre of which moves with velocity v; along the trajectory

1 as + a
r =ut+x ——log 2 !
4! as — ay

(6.38)

The last term is negative and represents a backward shift in space of the slower
soliton compared to where it would have been at the same time in the absence of the
faster soliton. (Equivalently, we can view this as a time delay for reaching a fixed
value of x.)

*According to the signs of the limits of §; and 5, the limit of tan(u/4) is as follows:
+4 tan(u/4) — 0
+—: tan(u/4) — +o
—+: tan(u/4) — —oo
—— tan(u/4) — 0
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2. t — —oo:

In this limit #; — +0, so €2 — 40 and it is rather e~?2 that tends to zero. So we

should divide through by €2 before taking the limit:

¢ u el — b2
=N
=t _ 1
~ et el
— —,uefel .
Recalling that tan (A + g) = —@, this means that

u ™
t <—J_r—>—> e
an 153 woe

et (x—vlt—ﬂ_h—% log H) .

Therefore

71 (m—vlt—fl—$ log M)
x 1
u‘t_}_oq X, fnite +27m + 4arctane .

(The + sign ambiguity can be fixed by continuity. It turns out that —27 is correct.)

This is a kink, the centre of which moves with velocity v, along the trajectory

a9 + aq

1
xr=wvt+7T +—log
Al a2 —

(6.39)

The last term is positive and represents a forward shift of the slower soliton com-
pared to where it would have been at the same time in the absence of the faster
soliton. (Equivalently, we can view this as a time advancement.)

Comparing the trajectories at early times ({ — —o0) and at late times ({ — +0), we see
that the collision with the faster soliton shifts the slower soliton backwards by

2 a2 + ap

— log ’
7 as — a

as shown in the following figure:
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We say that the slower soliton has a negative phase shift:

ao + ay

2
PHASE SHIFToyer = —— log

(6.40)
N as — ay

We conclude that the slower kink emerges from the collision with the same shape and
velocity, but delayed by a finite phase shift.

Now consider V' = vy, or "let’s ride the faster soliton". The calculation is similar to the
above, so I'll let you work out the details in [Ex 35]. If you do this exercise you will find
a surprise: even though as > 0, so that acting on the vacuum with the a,-Backlund trans-
formation produces a kink, the component of the two-soliton solution that moves at
velocity v, is actually an anti-kink! So, even though the Backlund transformation always
adds a soliton, the nature of the added soliton depends on what is already there.

The shifts have opposite signs to before, as shown below.

1-antikink

1 a,+a,
T =%

This results in a positive phase shift:

as + ap

2
PHASE SHIF Ty = +— log

(6.41)
V2 as — ay

Putting everything together, we have the following picture for the collision of the kink and
the anti-kink:

anhlcinle feinl

Figure 6.1: Schematic summary of the kink-antikink solution.
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These features can be seen in Fig. a plot of the exact kink-antikink solution with pa-
1.1, ay = 2, and Fig. a contour plot of the energy density of the same

rameters a; = =
solution which clearly shows the trajectories of the kink and the anti-kink. See also
and the course webpage for some animations of the time evolution.

]
A\

ANTIKINK-KINK (a1=1.1, a5=2)

N

Figure 6.2: 3d plot of the kink-antikink solution for a; = 1.1, ags = 2.

ANTIKINK-KINK {a:=1.1, a:=2): contour plot of the energy density
T T T

Figure 6.3: Contour plot of the energy density of the a; = 1.1, ag = 2 solution.

REMARK:
From Fig. [6.3] we see that the kink and the anti-kink appear to attract each other, acceler-
ating towards each other as the moment of interaction approaches.


http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_animation.gif
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The remaining cases for the signs of a; and ay can be analysed similarly: see [Ex 36]
and [Ex 37]. The situation for a 2-soliton solution that contains two kinks is depicted
in Fig. (Given that the two kinks are indistinguishable apart from their velocities,
the way that the trajectories are joined together in the picture on the right might seem
arbitrary. However a look at the energy-density plot on the next page should convince
you that the option shown is the physically-correct choice.)

Figure 6.4: Schematic summary of the kink-kink solution.

Looking at the plots of the exact solution for a; = 0.6, a = —1.5 shown in Figs. |6.5|and
[6.6|below, we see that, in contrast to the kink-antikink case, two kinks appear to repel each
other.

KINK-KINK (a1=0.6, a2=-1.5

Figure 6.5: 3d plot of the kink-kink solution for a; = 0.6, ag = —1.5.

>The solution that contains two anti-kinks can be obtained by sending u — —u.
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KINK-KINK (a4=0.6, az=-1.5): contour plot of the energy density
T T T

Figure 6.6: Contour plot of the energy density of the a; = 0.6, ag = —1.5 solution.

INTERPRETATION:
ATTRACTIVE FORCE between kink and anti-kink
REPULSIVE FORCE  between kink and kink

REPULSIVE FORCE  between anti-kink and anti-kink

So kinks and anti-kinks behave in a similar way to elementary particles with electric
charge, such as the electron and the positron. The role of electric charge is played here
by the topological charge:

Solitons with like topological charges repel

Solitons with opposite topological charges attract.

It is quite amazing that lump of fields can behave so similarly to pointlike elementary par-
ticles. In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four
spacetime dimensions to model the behaviour of protons and neutrons in atomic nuclei.
This is a very far-reaching idea, which unfortunately we don’t have time to investigate
further in this module.

We have seen that kinks and anti-kinks attract each other. This raises a natural question:
can they stick together, or in physics parlance “form a bound state”? The answer is yes,
and the resulting bound state of a kink and an anti-kink is the “breather”, to which we now
turn.
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6.8 The breather

Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, rewritten here for
convenience:

as + ap et

— b2
as — ay 1 + e +02

u = 4 arctan (

This is a solution of the sine-Gordon equation for any values of the Backlund parameters a;
and as (and integration constants c; and ¢;), even complex ones. However, the sine-Gordon
field u is an angle and so it must be real. There are two ways to achieve this{]

1. ay, a9 (and ¢, c3) € R:  this is what we have considered so far;

2. ag = af (and ¢y = ¢f):  this is what we will consider next. But let’s first check that
the corresponding w is real:

*
* as + aq el — ef2
u* = |4arctan o
ag —ay 1 + ef1to2

% *

ai +af et — e

darctan [ — ” R
a, —a;l+e 1 +05

a; + ag et

— et
a; —as 1+ 692+‘91>
ag +ay e’ — e
as —ay 1 +691+92> -

= 4 arctan (

= 4 arctan (

To get to the second line we used the fact that arctan(z) and e* are complex analytic
functions, therefore [arctan(z)]* = arctan(z*) and [e*]* = . To get to the third
line we used 0y = 67, which follows from as = aj and ¢y = ¢f.

Let us then consider option 2 and try a solution with arbitrary a; = a5 = a and with
c1 = ¢ = 0 for simplicity. Define

ag=a=A+iB = |a]e”
B ) » (6.42)
ag =a=A—iB = |ale™
where A = Re (a), B = Im (a), p = arg(a), and let
h=a+i
Lmakid) (643)
Oy =a—1if

with « and [ real functions of z, ¢ to be determined below. Then

U |a‘(€—w + ei(p) ea+i,£3 _ ea—iﬁ
tan — = - — -
4 a|(e7 — et®) 1+ e2@

2cosp  2isinf

—2isin ¢ " 2cosha

®To be more precise, one can also add to the integration constants c; and co an integer multiple of 7.
This has the effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is
even.
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which simplifies to

tan = = — 8% sinf | (6.44)
4 sin ¢ cosh «

To finish the calculation, let’s determine the functions «, 5 in terms of the coordinates x, ¢
and the parameters |a| and :

a+if=0,=-a" —ax”
a
_ 6.45)
a _ A—iB | . (
—a" —ar x"— (A+iB)x
|a? |a?
Therefore
A
a= Re(t) = Wer — Ax~
A1
= — <—$+ — |a|z )
lal \lal
We can now do similar manipulations to those after equation to find
a=—vy(r—vt) = cosp-y(xr—uvt)|, (6.46)
|a| ©22)
where
_aP?—1
a2+ 1
. 6.47
1 1+a? (647)
T ViS22
* EXERCISE: Show that similarly [Ex 38]
B :
f=—vvr—t) = sinp-y(vr —t)|. (6.48)
|a| {642)
Substituting these expressions in we find the breather solution
r— -
tan % = —cot . SnlIn@ Az —t)) | (6.49)
4 cosh(cos p - y(x — vt))

REMARKS:

« The ratio of the prefactor and the denominator in the RHS,

—cot g
cosh(cos ¢ - y(z — vt))’

defines an envelope function moving at the group velocity v. Recall that |v| < 1,
where 1 is the speed of light, so this is consistent with the laws of special relativity.
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+ The numerator
sin(sin ¢ - y(x — vt))
defines a carrier wave which moves at the phase velocity 1/v.
To see why the solution (6.49) is called a breather, let us set |a| = 1, or equivalently v = 0.

(This can be achieved by switching to a comoving frame if v # (.) Then the breather
simplifies to

sin(sin ¢ - t)

(6.50)

u
tan — = cot ¢ -
Wy Ty cosh(cos p - x)

and the field looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink,
with time period
2m

T = (6.51)

|sing]| |

;<——*- Ax ——>'1
|

=2'acmx

Figure 6.7: Sketch of the v = 0 breather solution.

Fig.[6.7]shows a sketch of the v = 0 breather solution, while Figs.[6.8|and[6.9|show one such
solution, for ¢ = 7/10. Its period is approximately 20, as predicted by equation (6.51). See
also this link, or the course webpage, for an animation of the time evolution.

One can showﬂ that the v = 0 breather has energy FEleamer = 16 cos . Since a static kink
and a static anti-kink have energy Eyinx = Eantikink = 8 , the binding energy of the kink

"This is a good but technical exercise, which is not in the problem sheet.


http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_animation.gif
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his
BREATHER {@=—)
10

Figure 6.8: 3d plot of the breather solution for v = 0 and ¢ = 7/10.

m
BREATHER (@=—}: contour plot of the energy density
10

wr ' .

Figure 6.9: Contour plot of the energy density of the v = 0, ¢ = 7/10 breather.

and the anti-kink in the breather is
Ebinding = Ebreather — Ekink — Fantikink = _16(1 — COS (,0) .

This is negative as expected: the binding lowers the energy of the solution.

As ¢ — 0, the binding energy tends to zero. It is immediate to see from equation (6.51) that
the time period of the breather diverges: 7 ~ 1/|p| — oo . The spatial size of the breather
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also diverges [Ex 39]:

Tmax ~ — log |p] | — 0.

In this limit the kink and the antikink become more and more loosely bound. The resulting
solution
u = 4 arctan (¢ - sech(x))

describes a kink and an anti-kink starting infinitely far away from one another and doing
half an oscillation. Since sech(z) ~ 2e71*l as |z| — o0, the kink and the anti-kink do not
follow linear trajectories as ¢ — +o0. Rather, the asymptotic trajectories of the kink and
the anti-kink are given by |z| ~ log [¢|.



