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31, (a)

(b)

Show that the pair of equations

(1= v)s = V)2
(U + U)_ — \/§€(u71))/2

provides a Bécklund transformation linking solutions of v, _ = 0 (the wave equa-
tion in light-cone coordinates) to those of u, = e* (the Liouville equation).

Starting from d’ Alembert’s general solution v = f(x1) + g(z~) of the wave equa-
tion, use the Bécklund transformation from part (a) to obtain the corresponding
solutions of the Liouville equation for u. [Hint: Set u(z™,z7) = 2U(z",27) +
f(z™) — g(x™). You might simplify the notation by setting f(z™) = log(F'(z™))
and g(x~) = —log(G’(x™)), where prime means first derivative.]

32. Consider the Backlund transformation

(a)

(b)

(c)

(d)

1
z a =0
v +2uv

1 1
vt+§umv—1u2v:0.

Show that these equations taken together imply that v satisfies the linear heat equa-
tion v; = v, , while u satisfies Burgers’ equation u; + ut, — Uze = 0.

[Hint: for v, solve the first equation for u and substitute in the second; for u, start
by cross-differentiating.]

Find the general travelling-wave solution for v(x, ) and, via the Bécklund transfor-
mation, re-obtain the travelling-wave for Burgers’ equation found in question 17.

* The linear equation satisfied by v(z, t) allows for the linear superposition of so-
lutions. Use this fact, and your answers to part (b), to construct solutions for v and
then u which describe the interaction of two travelling waves.

* Sketch your solutions functions of x at fixed times both before and after the
interaction, and also draw their trajectories in the (x, ) plane, perhaps starting with
the help of a computer. Are the travelling waves of Burgers’ equation true solitons,
in the sense given in lectures?

[Hints: Examine the asymptotics of the solution viewed from frames moving at
various velocities V' (that is, set Xy = x — V't and consider ¢ — o0 keeping Xy
finite). This should allow you to isolate various travelling waves in these limits,
and to decide whether they preserve their form under interactions. For definiteness,
consider the case ¢; > ¢y > 0, where c¢; and ¢, are the velocities of the two separate
travelling waves before they were superimposed. A further hint: as well as the
‘expected’ special values for V', namely c; and ¢y, be careful about what happens
when V = ¢ + ¢s.]
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33.

34.

35.

36.

37.

(a) Show that the two equations

Uy = —u — V2

vy = 2u? + 2uv? + Ugy — 2ULV
are a Bicklund transformation relating solutions of the KdV equation
Uy + 6UUy + Uy =0
and the wrong sign modified KdV (mKdV) equation
vy — 6020, + Ugyy = 0.

(Note the appearance of the Miura transform in the Bicklund transformation.)

(b) Taking u = ¢, where c is a constant, as a seed solution of the KdV equation, find
the corresponding solution of the wrong sign mKdV equation.

The 2-soliton solution of the sine-Gordon equation with Bicklund parameters a; and a,

1S

efr — ef2

u(z,t) = 4arctan <u m) , 0; = eivi(z — vt — ;)

where 11 = (az+ay)/(ag—a1), v; = (a?—1)/(a?+1), v = 1/\/1—v2, &; = sign(a;), and
Z1 and Ty are constants, as in the lectures. Rewriting v as a function of Xy = x — Vi
and ¢, show that, for V' # vy, v9 (and vy # v7)

}Lrglo u = 2nm
Xy finite

where 7 is an integer. If v > v; > 0 and ¢; = 1, how does the parity of n (whether it is
even or odd) depend on the value of v relative to v; and v,?

[Hints: First show that |#;| — +o00 as t — *oo; then consider each of the four possible
options (#1,02) — (400, +00), (—00, —00), (+00, —00), (—00, +00). Remember that
arctan(0) = mm and arctan(4o00) = £m/2+mm, where the ambiguities of mm, m € Z,
encode the multivalued nature of the arctan function.]

Find the asymptotics of the 2-soliton sine-Gordon solution defined in problem 34, in the
case ap > aj > 0, as t — Foo with X, = x—wv,t held finite.

Show by direct analysis (as in the lectures) that taking a; and ag of opposite signs in
problem 34 results in a two-kink, or two-antikink, solution to the sine-Gordon equation.

(a) The argument of the arctangent in the sine-Gordon 2-soliton solution of problem
34 is a continuous function of x for all x € R. In particular, it is never infinite.
What does this imply about the range of «? [Hint: consider the graph of tanu/4.]

(b) By taking the limits of this function as * — +oo (witht = z; = Z, = 0 for
simplicity), show that the topological charge of this two-soliton solution is 0 if
sign(a;) = sign(az), and £2 if sign(a;) = —sign(asy), in units where the topologi-
cal charge of a kink is 1.
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38. Consider the two-soliton solution of the sine-Gordon equation from problem 34 with
complex Bécklund parameters a; = a3 := a € C and with vanishing integration con-
stants, as is appropriate to find the breather solution. Show that

Re(61) = +Re(f2) = v(x — vt) cos ¢,
Im(0;) = —Im(62) = y(vx —t)sing,

where ¢ = arg(a) and

> — 1
V=
la|? 4+ 1
1 1+]af

Tz 2

39. The stationary breather solution of the sine-Gordon equation (that is the breather solu-
tion with v = 0) has the form
u _ cosp sin(tsing)

tan — = .
MY Sin ¢ cosh(xcosp)

Show that in the limit ¢ — 0, in which the kink and antikink that form the breather are
very loosely bound, the time period 7 of a single oscillation of the breather scales like
7 ~ |p|71, and the spatial size T,y of the breather scales like T 0 ~ — log .

[Hint: You could define x,,,x as the value of = at which tan(u/4) = 1 when the oscilla-
tory factor in the numerator is at its maximum. Focus only on the parametric dependence
on ¢, ignoring all numerical factors.]

40. We have seen in lectures that the KdV equation u; + 6w, 4 t,,, = 0 for the field u(x, t)
that describes the profile of a wave translates into the following equation for the new
variable w(z,t) = [ dz w:

wt+3wg25+wmac =0.

Let w = 2% log f = 2f,/f where f(z,t) is a nowhere vanishing function of x and t,

so that u = 28‘9—; log f. The aim of this exercise is to rewrite the equation for w as an
equation for f.

(a) Express wy, Wy, Wy, and w,,, in terms of f and its derivatives.

(b) Show that the equation for w; + 3w32: 4+ Wzee = 0 can be rewritten as

ffxt - fmft +3 ;ip - 4fxfxxx =+ ffxxxa: =0 )

which is known as the quadratic form of the KdV equation.
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41. The Hirota bilinear differential operator D;" D7 is defined for any pair of natural numbers
(m, n) by

o (2O (D DY »
oot = (5- ) (5 o) Seted)

and maps a pair of functions (f(x,t), g(x,t)) into a single function.

a) Prove that the Hirota operators Bm n «— D™ D™ are bilinear, ie. for all constants
p 5 t x
ai, Ao

Bpn(arfi+asfa- g) = a1Bun(fi - 9) + a2Bma(fa - g) ,
By (f - a191 + a292) = a1 B n(f - 1) + a2 By (f - 92) -

(b) Prove the symmetry property
Bun(f-9) = <_1>m+an7n(g - f)-

(c) Compute the Hirota derivatives D?(f - g) and D2(f - g), and verify that your ex-
pression for the latter is consistent with the result for D4(f - f) given in lectures.

42. Define a “not-Hirota” bilinear differential operator D}* D" by

e on (2o OV (2 e ) g
oroxs 0= (54 ) (5t o) Seete)

=z
t'=t

(note the plus signs!).
(a) Compute D,(f - g) and D,(f - g), verifying that in both cases the answer is given
by the corresponding ‘ordinary’ derivative of the product f(z,t)g(z,t).

(b) How does this result generalise for arbitrary not-Hirota differential operators? Prove
your claim.

(c) Compare your answer with the Hirota operators defined above.
43. (a) If 0; = a;x + bt + ¢;, prove that
DD, (e - %) = (by — by)(ay — ag)e® 2,

(b) Prove the corresponding result for D™ D™ (% - %), as quoted in lectures.

44. Prove that

DIDy(f-1) = 20 g
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45.

46.

47.

48.

49.

Consider the function f, such that u = 28‘% log f is the KdV field, which corresponds
to a 2-soliton solution:

2
f:1+€f1+€2f2 :1+6(601 +€92) +€2 (a’l a2) 601—"_92,
ay + az

where 0; = a;x — at + ¢;, with a; and ¢; constants. Check that B(f; - f) = 0 and
B(fy - f2) = 0, where B = D,(D; + D2), and show that this implies that the above
expansion, which is truncated at order €2, is a solution of the bilinear form of the KdV
equation.

Derive the solution of the bilinear form of the KdV equation D, (D; + D3)(f - f) = 0
which represents the 3-soliton solution, in the form

f=lt+eh+eéfatefy
where f; = Zil e%. [This includes proving that the higher order terms in the e expan-
sion can be consistently set to zero, as in problem 45.]
Show that the Boussinesq equation
Uit = Uge = 3(U?) e — Upzao = 0
can be written in the bilinear form
(Df =Dz = Dy)(f - f) =0
where u = 2% log f.
Show that the following higher-dimensional version of the KdV equation,
(up + 6uty + Uy )z + 302uyy =0

for the field u(x, y,t), also known as the Kadomtsev-Petviashvili (KP) equation, can be
written in the bilinear form

(DyDy + Dy +302D2)(f - f) =0
where u(x,y,t) = 280—;2 log f(x,y,t).
It is given that the system of Hirota equations

(D2~ D2~ 1)(f - 9) =0

(DY =DI)(f - f)=(D:—=Df)(g-9g)
yields solutions u = 4 arctan(g/ f) of the sine-Gordon equation. Let 6; = a;x + b;t + ¢;,
where a;, b;, ¢; are constants.

(a) Take
f=1, g=e”
and work order by order in powers of ¢ to find the one-soliton solution of the sine-

Gordon equation.

(b) Taking e” as in the solution of the previous part, repeat the exercise for
f=1+éf, g =e(e +e%)

and check that the Hirota equations are satisfied to all orders in e.



