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Bizarre flavour structure built into Yukawas:

The flavour problem
Addressing the flavour problem

Problem 1: mass hierarchies
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James Barnard Strong coupling, discrete symmetry and flavour
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General ideas: 
SUSY
Assume boson coupling to higgses with λb and also fermions with strength λf .

!
_
!f f

|! |
 2
b

At one loop order
δVhiggs ∼ (|λb |2 − |λf |2)H2Λ2.

Invoke symmetry to set λb = λf ;

SUSY
Require a transformation turning bosons into fermions:

δξφ = aξαχα.

By spin and dimension then fermions transform as ...

δξχ
α = bσµ

αα̇ξ
α̇
∂µφ+ cξαF .

where F is some field of spin 0 and dimension 2 which in turn does...

δξF = dξα̇σ
µα̇α∂µχα.

SUSY
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At one loop order
δVhiggs ∼ (|λb |2 − |λf |2)H2Λ2.

Invoke symmetry to set λb = λf ;
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Require a transformation turning bosons into fermions:

δξφ = aξαχα.

By spin and dimension then fermions transform as ...

δξχ
α = bσµ

αα̇ξ
α̇
∂µφ+ cξαF .

where F is some field of spin 0 and dimension 2 which in turn does...

δξF = dξα̇σ
µα̇α∂µχα.

SUSY

Hierarchy problem: higgs couples to scalars as well as quarks: then 

But Yukawas will run like logarithmically. Have to arrange precise cancellation 
around the weak scale - or a new symmetry thats sets the two couplings equal. 
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Require a transformation turning bosons into fermions 

By spin and dimensions the fermion can only transform as 

where F is some field of spin 0 and dimension 2 which can transform as 
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General ideas: 

δξF = dξσµ∂µχ

The multiplet {ϕ,χα, F} is called a chiral su-

permultiplet. If we begin with ϕ∗we get the

complex conjugates, {ϕ∗,χα̇, F
∗}.

Now exercise; determine a, b, c, d;

1) the supersymmetry ... manifest in

[δξ, δη]ϕ = ab(ησµχ− χσµη)∂µϕ

[δξ, δη]χ = cd(ησµχ− χσµη)∂µχ

Note that the auxilliary field is needed to do

this (make the algebra close)

c.f. [Ta, T b] = ifabcT
c acting on fields in gauge

theory.

so ab = cd.

So ab=cd. 

Invariance of the Kinetic Lagrangian 
sets 

2) Invariance of the Kinetic Lagrangian - guess

LKE = −iχσµ∂µχ− ∂µϕ∗∂µϕ+ F ∗F

Invariance (i.e. transforms into itself plus total

derivatives) requires

b = ia; d = ic

Remaining freedom just normalizes δξ; choose

a =
√
2.

Interactions must also be invariant under the

δξ transformation - anything that transforms

into itself plus total derivative e.g.

Lint = F

To get something more sensible use a trick.

What happens if we transform ϕ many times
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2.

Interactions must also be invariant under the

δξ transformation - anything that transforms

into itself plus total derivative e.g.

Lint = F

To get something more sensible use a trick.

What happens if we transform ϕ many times

and substituting in the solution of the equation of motion:

∂

2
W

∂φ

2
H

= ∓M

√

1 − λyφ

2

M

2
. (1.23)

We could also apply the holomorphy analysis to this problem. First, we can
maintain the symmetries of the previous example by assigning charges (-3,0,-
1) under U(1)A ×U(1)B ×U(1)R to the coupling y. Then requiring that the
effective superpotential has no dependence on φH and maintains the three
symmetries we find that it must have the form

Weff =
M

3

y

2
f

(
λyφ

2

M

2

)

, (1.24)

for some function f , just as we found from integrating out φH .

1.4 The Holomorphic Gauge Coupling

Using the superspace notation4
y

µ ≡ x

µ−iθσ

µ
θ (where θ is an anti-commuting

Grassmannian variable) we can write a chiral supermultiplet consisting of a
scalar φ, a fermion ψ and an auxiliary field F as a chiral superfield

Φ = φ(y) +
√

2θ ψ(y) + θ

2
F (y) . (1.25)

We can also use this notation to represent an SU(N) gauge super-multiplet
as a chiral superfield

W

a
α = −iλ

a
α(y) + θαD

a(y) − (σµν
θ)αF

a
µν(y) − (θθ)σµ

Dµλ

a†(y) , (1.26)

where the index a labels an element of the adjoint representation, running
from 1 to N

2 − 1, λ

a is the gaugino field, F

a
µν is the usual gauge field

strength,and D

a is the auxiliary field. We have used the notation that the
σ

i are the usual Pauli matrices and

σ

µ = (I, σ

i) (1.27)

σ

µ = (I,−σ

i) (1.28)

σ

µν =
i

4
(σµ

σ

ν − σ

ν
σ

µ) . (1.29)

4For an excellent review see ref. [12].

8
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General ideas: 
Chiral superfields: 

to get interactions consider a large SUSY transformations of the boson: 
another exercise (introduces idea of superspace)

through a finite transformation, ξα+ ξα+ ... =

θα? This can be written,

Φ = eδθ ϕ

Another exercise;

Φ = (1+ δθ +
1
2!δ

2
θ + ...)ϕ(x)

= ϕ(y) +
√
2θχ(y) + θθF(y)

where yµ = xµ + iθσµθ. Note that θθ × θα = 0

because only two components in θα and they

anticommute. i.e. Φ(θ, y). Any function of Φ

has the same transformation properties – i.e.

its θθ term is a total derivative.

So the F -term of any function of superfields

(superpotential) is a suitable Lagrangian;

L = W |θθ + h.c.
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Hence the components of any function of                 transform as 
the components of                  did themselves.  
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General ideas: 

Superpotential: 

Notice that the F-term transformed under SUSY as a total derivative. Hence 
take any function of chiral superfields W, and write

through a finite transformation, ξα+ ξα+ ... =

θα? This can be written,

Φ = eδθ ϕ

Another exercise;

Φ = (1+ δθ +
1
2!δ

2
θ + ...)ϕ(x)

= ϕ(y) +
√
2θχ(y) + θθF(y)

where yµ = xµ + iθσµθ. Note that θθ × θα = 0

because only two components in θα and they

anticommute. i.e. Φ(θ, y). Any function of Φ

has the same transformation properties – i.e.

its θθ term is a total derivative.

So the F -term of any function of superfields

(superpotential) is a suitable Lagrangian;

L = W |θθ + h.c.
int

Example: top Yukawa  

giving

Lm = −m2|ϕ|2 −mχχ−mχχ

Example 2) Top Yukawa coupling, and higgs

masses...

Superfields - with usual SU(3)xSU(2)xU(1) charges;

Hu = hu h̃u Fhu
Q = q̃ q FQ
tc = t̃c tc Ftc

Wtop−Y ukawa = λtQHutc

Ltop−Y ukawa = −λtqhutc−λtq̃(h̃utc)−λt(qh̃u)t̃c+

λ2t |hut̃|2+λ2t |huq̃|2+.... gives the promised can-

cellations to Higgs mass.

The MSSM

giving

Lm = −m2|ϕ|2 −mχχ−mχχ

Example 2) Top Yukawa coupling, and higgs

masses...

Superfields - with usual SU(3)xSU(2)xU(1) charges;

Hu = hu h̃u Fhu
Q = q̃ q FQ
tc = t̃c tc Ftc

Wtop−Y ukawa = λtQHutc

Ltop−Y ukawa = −λtqhutc−λtq̃(h̃utc)−λt(qh̃u)t̃c+

λ2t |hut̃|2+λ2t |huq̃|2+.... gives the promised can-

cellations to Higgs mass.

The MSSM
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Alert 2: Note that

The field strength can be written as

F

a
µν = ∂µA

a
ν − ∂νA

a
µ + gf

abc
A

b
µA

c
ν , (1.30)

where f

abc is the structure constant of the gauge group determined through
the adjoint generators T

a by

[T a
, T

b] = if

abc
. (1.31)

Finally, using the notation

τ ≡ θYM

2π
+

4πi

g

2
, (1.32)

we can write the SUSY Yang-Mills action as a superpotential term

1

16πi

∫
d

4
x

∫
d

2
θ τ W

a
αW

a
α + h.c. (1.33)

=
∫

d

4
x

[

− 1

4g2
F

aµν
F

a
µν −

θYM

32π2
F

aµν
F̃

a
µν +

i

g

2
λ

a†
σ

µ
Dµλ

a +
1

2g2
D

a
D

a

]

,

where

F̃

a
µν =

1

2
ε

µναβ
F

a
αβ . (1.34)

Note that the gauge coupling g only appears only in τ which is a holomorphic
parameter, but the gauge fields are not canonically normalized. To go to a
canonically normalized basis5 we would rescale the fields by

(Aa
µ, λ

a
α, D

a) → g(Aa
µ, λ

a
α, D

a) (1.35)

Recall that the one-loop running of the gauge coupling g is given by the
renormalization group equation:

µ

dg

dµ

= − b

16π2
g

3
, (1.36)

where for an SU(N) gauge theory with F flavors and N = 1 supersymmetry,

b = 3N − F . (1.37)
5Due to subtleties with the measure in the path integral there is a non-trivial relation

between the running of the holomorphic gauge coupling and the running of the canonical
gauge coupling [3,4,13,14].
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ISS

b = 3N − FQ

4

where h

a
µν describes how the instanton is oriented in the gauge space and

spacetime. Equation (1.45) represents an instanton configuration of size ρ

centered about the point x

ν
0. Such instantons have a non-trivial, topologi-

cal winding number, n, which takes integer values. The CP violating term
measures the winding number:

θYM

32π2

∫
d

4
xF

aµν
F̃

a
µν = n θYM . (1.46)

Since the path integral has the form
∫
DA

aDλ

aDD

a
e

iS
, (1.47)

and the action S depends on θYM only through a term which is an integer
times θYM it follows that

θYM → θYM + 2π , (1.48)

is a symmetry of the theory since it has no effect on the path integral.
The Euclidean action of a instanton configuration can be bounded, since

0 ≤
∫

d

4
xTr

(
Fµν ± F̃µν

)2
=

∫
d

4
xTr

(
2F 2 ± 2FF̃

)
, (1.49)

so we have
∫

d

4
xTrF

2 ≥ |
∫

d

4
xTrF F̃ | = 32π2|n| . (1.50)

Thus one instanton effects are suppressed by

e

−Sint = e

−8π2

g2(µ)
+iθYM =

(
Λ

µ

)b

. (1.51)

If we integrate down to the scale µ we have the effective superpotential

Weff =
τ(Λ; µ)

16πi

W

a
αW

a
α . (1.52)

Since the physics must be periodic in θYM,

Λ → e

2πi/bΛ , (1.53)
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General ideas: 

Vector superfields:

in a similar fashion can gauge interactions - also get superpartner interactions

on gauge-invariant combinations of fields in gauge supermultiplets, as they were on the chiral supermul-
tiplets [compare eq. (3.16)]. This check requires the use of identities eqs. (2.18), (2.20) and (2.25). If
we had not included the auxiliary field Da, then the supersymmetry algebra eq. (3.63) would hold only
after using the equations of motion for λa and λ†a. The auxiliary fields satisfies a trivial equation of
motion Da = 0, but this is modified if one couples the gauge supermultiplets to chiral supermultiplets,
as we now do.

3.4 Supersymmetric gauge interactions

Now we are ready to consider a general Lagrangian density for a supersymmetric theory with both
chiral and gauge supermultiplets. Suppose that the chiral supermultiplets transform under the gauge
group in a representation with hermitian matrices (T a)i

j satisfying [T a, T b] = ifabcT c. [For example,
if the gauge group is SU(2), then fabc = εabc, and the T a are 1/2 times the Pauli matrices for a
chiral supermultiplet transforming in the fundamental representation.] Since supersymmetry and gauge
transformations commute, the scalar, fermion, and auxiliary fields must be in the same representation
of the gauge group, so

δgaugeXi = igΛa(T aX)i (3.64)

for Xi = φi,ψi, Fi. To have a gauge-invariant Lagrangian, we now need to replace the ordinary
derivatives in eq. (3.33) with covariant derivatives:

∂µφi → Dµφi = ∂µφi − igAa
µ(T aφ)i (3.65)

∂µφ∗i → Dµφ∗i = ∂µφ∗i + igAa
µ(φ∗T a)i (3.66)

∂µψi → Dµψi = ∂µψi − igAa
µ(T aψ)i. (3.67)

Naively, this simple procedure achieves the goal of coupling the vector bosons in the gauge supermul-
tiplet to the scalars and fermions in the chiral supermultiplets. However, we also have to consider
whether there are any other interactions allowed by gauge invariance and involving the gaugino and
Da fields, which might have to be included to make a supersymmetric Lagrangian. Since Aa

µ couples
to φi and ψi, it makes sense that λa and Da should as well.

In fact, there are three such possible interaction terms that are renormalizable (of field mass di-
mension ≤ 4), namely

(φ∗T aψ)λa, λ†a(ψ†T aφ), and (φ∗T aφ)Da. (3.68)

Now one can add them, with unknown dimensionless coupling coefficients, to the Lagrangians for
the chiral and gauge supermultiplets, and demand that the whole mess be real and invariant under
supersymmetry, up to a total derivative. Not surprisingly, this is possible only if the supersymmetry
transformation laws for the matter fields are modified to include gauge-covariant rather than ordinary
derivatives. Also, it is necessary to include one strategically chosen extra term in δFi, so:

δφi = εψi (3.69)

δψiα = −i(σµε†)α Dµφi + εαFi (3.70)

δFi = −iε†σµDµψi +
√

2g(T aφ)i ε†λ†a. (3.71)

After some algebra one can now fix the coefficients for the terms in eq. (3.68), with the result that the
full Lagrangian density for a renormalizable supersymmetric theory is

L = Lchiral + Lgauge

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (3.72)

25

The field strength can be written as

F

a
µν = ∂µA

a
ν − ∂νA

a
µ + gf

abc
A

b
µA

c
ν , (1.30)

where f

abc is the structure constant of the gauge group determined through
the adjoint generators T

a by

[T a
, T

b] = if

abc
. (1.31)

Finally, using the notation

τ ≡ θYM

2π
+

4πi

g

2
, (1.32)

we can write the SUSY Yang-Mills action as a superpotential term

1

16πi

∫
d

4
x

∫
d

2
θ τ W

a
αW

a
α + h.c. (1.33)

=
∫

d

4
x

[

− 1

4g2
F

aµν
F

a
µν −

θYM

32π2
F

aµν
F̃

a
µν +

i

g

2
λ

a†
σ

µ
Dµλ

a +
1

2g2
D

a
D

a

]

,

where

F̃

a
µν =

1

2
ε

µναβ
F

a
αβ . (1.34)

Note that the gauge coupling g only appears only in τ which is a holomorphic
parameter, but the gauge fields are not canonically normalized. To go to a
canonically normalized basis5 we would rescale the fields by

(Aa
µ, λ

a
α, D

a) → g(Aa
µ, λ

a
α, D

a) (1.35)

Recall that the one-loop running of the gauge coupling g is given by the
renormalization group equation:

µ

dg

dµ

= − b

16π2
g

3
, (1.36)

where for an SU(N) gauge theory with F flavors and N = 1 supersymmetry,

b = 3N − F . (1.37)
5Due to subtleties with the measure in the path integral there is a non-trivial relation

between the running of the holomorphic gauge coupling and the running of the canonical
gauge coupling [3,4,13,14].
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General ideas: 

Field-strength superfield:

Like the chiral superfield but start by SUSY transformations on the gaugino ... 

and substituting in the solution of the equation of motion:

∂

2
W

∂φ

2
H

= ∓M

√

1 − λyφ

2

M

2
. (1.23)

We could also apply the holomorphy analysis to this problem. First, we can
maintain the symmetries of the previous example by assigning charges (-3,0,-
1) under U(1)A ×U(1)B ×U(1)R to the coupling y. Then requiring that the
effective superpotential has no dependence on φH and maintains the three
symmetries we find that it must have the form

Weff =
M

3

y

2
f

(
λyφ

2

M

2

)

, (1.24)

for some function f , just as we found from integrating out φH .

1.4 The Holomorphic Gauge Coupling

Using the superspace notation4
y

µ ≡ x

µ−iθσ

µ
θ (where θ is an anti-commuting

Grassmannian variable) we can write a chiral supermultiplet consisting of a
scalar φ, a fermion ψ and an auxiliary field F as a chiral superfield

Φ = φ(y) +
√

2θ ψ(y) + θ

2
F (y) . (1.25)

We can also use this notation to represent an SU(N) gauge super-multiplet
as a chiral superfield

W

a
α = −iλ

a
α(y) + θαD

a(y) − (σµν
θ)αF

a
µν(y) − (θθ)σµ

Dµλ

a†(y) , (1.26)

where the index a labels an element of the adjoint representation, running
from 1 to N

2 − 1, λ

a is the gaugino field, F

a
µν is the usual gauge field

strength,and D

a is the auxiliary field. We have used the notation that the
σ

i are the usual Pauli matrices and

σ

µ = (I, σ

i) (1.27)

σ

µ = (I,−σ

i) (1.28)

σ

µν =
i

4
(σµ

σ

ν − σ

ν
σ

µ) . (1.29)

4For an excellent review see ref. [12].
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The field strength can be written as
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where f

abc is the structure constant of the gauge group determined through
the adjoint generators T

a by

[T a
, T

b] = if

abc
. (1.31)

Finally, using the notation

τ ≡ θYM

2π
+

4πi

g

2
, (1.32)

we can write the SUSY Yang-Mills action as a superpotential term
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=
∫

d

4
x
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F

a
µν −

θYM
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F
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F̃

a
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i

g

2
λ
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a +
1
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D
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D

a
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,

where

F̃

a
µν =

1

2
ε

µναβ
F

a
αβ . (1.34)

Note that the gauge coupling g only appears only in τ which is a holomorphic
parameter, but the gauge fields are not canonically normalized. To go to a
canonically normalized basis5 we would rescale the fields by

(Aa
µ, λ

a
α, D

a) → g(Aa
µ, λ

a
α, D

a) (1.35)

Recall that the one-loop running of the gauge coupling g is given by the
renormalization group equation:

µ

dg

dµ

= − b

16π2
g

3
, (1.36)

where for an SU(N) gauge theory with F flavors and N = 1 supersymmetry,

b = 3N − F . (1.37)
5Due to subtleties with the measure in the path integral there is a non-trivial relation

between the running of the holomorphic gauge coupling and the running of the canonical
gauge coupling [3,4,13,14].
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General ideas: 

Renormalization-group running:

e.g. for SU(N) with        flavours have 

The field strength can be written as

F
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a by
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b] = if

abc
. (1.31)

Finally, using the notation

τ ≡ θYM

2π
+

4πi

g

2
, (1.32)

we can write the SUSY Yang-Mills action as a superpotential term

1

16πi

∫
d

4
x

∫
d

2
θ τ W

a
αW

a
α + h.c. (1.33)

=
∫

d

4
x

[

− 1

4g2
F

aµν
F

a
µν −

θYM

32π2
F

aµν
F̃

a
µν +

i

g

2
λ

a†
σ

µ
Dµλ

a +
1

2g2
D

a
D

a

]

,

where

F̃

a
µν =

1

2
ε

µναβ
F

a
αβ . (1.34)

Note that the gauge coupling g only appears only in τ which is a holomorphic
parameter, but the gauge fields are not canonically normalized. To go to a
canonically normalized basis5 we would rescale the fields by

(Aa
µ, λ

a
α, D

a) → g(Aa
µ, λ

a
α, D

a) (1.35)

Recall that the one-loop running of the gauge coupling g is given by the
renormalization group equation:

µ

dg

dµ

= − b

16π2
g

3
, (1.36)

where for an SU(N) gauge theory with F flavors and N = 1 supersymmetry,

b = 3N − F . (1.37)
5Due to subtleties with the measure in the path integral there is a non-trivial relation

between the running of the holomorphic gauge coupling and the running of the canonical
gauge coupling [3,4,13,14].
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The solution for the running coupling is

1

g

2(µ)
= − b

8π2
ln

(
|Λ|
µ

)

, (1.38)

where |Λ| is the intrinsic scale of the non-Abelian gauge theory that enters
through dimensional transmutation. We can then write the one-loop running
version of our holomorphic parameter τ as

τ1−loop =
θYM

2π
+

4πi

g

2(µ)
(1.39)

=
1

2πi

ln




(
|Λ|
µ

)b

e

iθYM




. (1.40)

We can then define a holomorphic intrinsic scale

Λ ≡ |Λ|eiθYM/b (1.41)

= µe

2πiτ/b
, (1.42)

or equivalently

τ1−loop =
b

2πi

ln

(
Λ

µ

)

. (1.43)

In order to take account of non-perturbative effects we need to understand
the term in the action proportional to θYM. This FF̃ term violates a discrete
symmetry: CP (the product of charge conjugation and parity). The CP
violating term can be rewritten as

F

aµν
F̃

a
µν = 4εµνρσ

∂µTr
(
Aν∂ρAσ +

2

3
AνAρAσ

)
. (1.44)

Thus the CP violating term is a total derivative and can have no effect in
perturbation theory since it integrates to terms at the boundary of space-
time. Nevertheless it is well known that it can have non-perturbative effects.
To see this consider the following semi-classical instanton configuration of
the gauge field:

A

a
µ(x) =

h

a
µν(x − x0)ν

(x − x0)2 + ρ

2
, (1.45)
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How can we make sure we donʼt lose the cancellation of divergences?
Allow only dimensionful (soft) supersymmetry breaking (talk later about how this 
comes about)

Soft supersymmetry breaking 

Model particles and the Higgs bosons have even R-parity (PR = +1), while all of the squarks, sleptons,
gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [73] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [74] can exist provided that they satisfy certain anomaly cancellation
conditions [75] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [76, 77], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [77]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [77, 78]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 10.1.

5.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 4, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃† m2
Q Q̃ − L̃† m2

L L̃ − ũm2
u ũ

† − d̃m2
d

d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c.) . (5.12)

36Many constraints on the form of the SUSY breaking: e.g.                    - often assumed 
universal

In eq. (5.12), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (5.12) contains the (scalar)3

couplings [of the type aijk in eq. (4.1)]. Each of au, ad, ae is a complex 3 × 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (5.12) consists of squark and slepton mass terms of the (m2)ji type
in eq. (4.1). Each of m2

Q, m2
u, m2

d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (5.12) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (4.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (5.13)

m2
Q, m2

L, m2
u, m2

d
, m2

e , m2
Hu

, m2
Hd

, b ∼ m2
soft, (5.14)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (5.12)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [79] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

5.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (5.12) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [80]-[105].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 5.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.72)]. The result of calculating this diagram gives [82, 85], approximately,

Br(µ → eγ) =




|m2

µ̃∗
R ẽR

|
m2

!̃R




2 (

100 GeV

m!̃R

)4

10−6 ×






15 for mB̃ % m!̃R
,

5.6 for mB̃ = 0.5m!̃R
,

1.4 for mB̃ = m!̃R
,

0.13 for mB̃ = 2m!̃R
,

(5.15)

where it is assumed for simplicity that both ẽR and µ̃R are nearly mass eigenstates with almost degener-
ate squared masses m2

!̃R
, that m2

µ̃∗
R ẽR

≡ (m2
e)21 = [(m2

e)12]∗ can be treated as a perturbation, and that

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2

3.

37

(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

g̃ g̃

d̃R s̃R

s̃∗R d̃∗R

d s

s̄ d̄

(a)

g̃ g̃

d̃L s̃L
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s̄ d̄

(b)

g̃ g̃

d̃L s̃R

s̃∗R d̃∗L

d s

s̄ d̄

(c)

Figure 5.7: Some of the diagrams that contribute to K0 ↔ K
0

mixing in models with strangeness-
violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.
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soft contains
ẽaeL̃Hd + c.c. which implies terms −〈H0

d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
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[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
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There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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Major success! Unification of gauge couplings looks better (see Martin review 9709356)

Figure 5.8: RG evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid lines).
In the MSSM case, the sparti-
cle mass thresholds are varied be-
tween 250 GeV and 1 TeV, and
α3(mZ) between 0.113 and 0.123.
Two-loop effects are included.
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quite small except for couplings involving the top, bottom, and tau flavors. Therefore, the (scalar)3

couplings and scalar squared-mass mixings should be quite negligible for the squarks and sleptons
of the first two families. Furthermore, RG evolution does not introduce new CP-violating phases.
Therefore, if universality can be arranged to hold at the input scale, supersymmetric contributions to
flavor-changing and CP-violating observables can be acceptably small in comparison to present limits
(although quite possibly measurable in future experiments).

One good reason to be optimistic that such a program can succeed is the celebrated apparent
unification of gauge couplings in the MSSM [110]. The 1-loop RG equations for the Standard Model
gauge couplings g1, g2, g3 are

βga ≡ d

dt
ga =

1

16π2
bag

3
a, (b1, b2, b3) =





(41/10, −19/6, −7) Standard Model

(33/5, 1, −3) MSSM
(5.21)

where t = ln(Q/Q0), with Q the RG scale. The MSSM coefficients are larger because of the extra
MSSM particles in loops. The normalization for g1 here is chosen to agree with the canonical covariant
derivative for grand unification of the gauge group SU(3)C × SU(2)L × U(1)Y into SU(5) or SO(10).
Thus in terms of the conventional electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW ,
one has g2 = g and g1 =

√
5/3g′. The quantities αa = g2

a/4π have the nice property that their
reciprocals run linearly with RG scale at one-loop order:

d

dt
α−1

a = − ba

2π
(a = 1, 2, 3) (5.22)

Figure 5.8 compares the RG evolution of the α−1
a , including two-loop effects, in the Standard Model

(dashed lines) and the MSSM (solid lines). Unlike the Standard Model, the MSSM includes just the
right particle content to ensure that the gauge couplings can unify, at a scale MU ∼ 2 × 1016 GeV.
While the apparent unification of gauge couplings at MU might be just an accident, it may also be
taken as a strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MP. Furthermore, if this hint is taken
seriously, then we can reasonably expect to be able to apply a similar RG analysis to the other MSSM
couplings and soft masses as well. The next section discusses the form of the necessary RG equations.
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Another major success! EWSB is driven by the large top Yukawa via RG effects -

2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)

0

100

200

300

400

500

600

M
as

s 
 [G

eV
]

m0

m1/2

(µ2+m0
2)1/2

squarks

sleptons

M1

M2

M3

Hd

Hu

Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

a reasonable approximation, the entire mass spectrum in minimal supergravity models is determined
by only five unknown parameters: m2

0, m1/2, A0, tan β, and Arg(µ), while in the simplest gauge-
mediated supersymmetry breaking models one can pick parameters Λ, Mmess, N5, 〈F 〉, tan β, and
Arg(µ). Both frameworks are highly predictive. Of course, it is easy to imagine that the essential
physics of supersymmetry breaking is not captured by either of these two scenarios in their minimal
forms. For example, the anomaly mediated contributions could play a role, perhaps in concert with
the gauge-mediation or Planck-scale mediation mechanisms.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [204]-[213],[194].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
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Usually trade Higgs VEVs after EWSB to end up with 4 free parameters in CMSSM so 
we have "                          where                                        and free parameters 

Then it is clear that a minimum of the potential V requires that H0
uH0

d is also real and positive, so 〈H0
u〉

and 〈H0
d 〉 must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them

both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (7.2)] are
identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 + m2
Hu

+ m2
Hd

. (7.3)

Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0

u and H0
d has a negative squared mass near H0

u = H0
d = 0 gives

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

). (7.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints eqs. (7.3) and (7.4) cannot both be satisfied. In

models derived from the minimal supergravity or gauge-mediated boundary conditions, m2
Hu

= m2
Hd

is

supposed to hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (5.61)] naturally pushes it to negative or small values m2
Hu

< m2
Hd

at the electroweak scale. Unless
this effect is significant, the parameter space in which the electroweak symmetry is broken would
be quite small. So in these models electroweak symmetry breaking is actually driven by quantum
corrections; this mechanism is therefore known as radiative electroweak symmetry breaking. Note that
although a negative value for |µ|2 + m2

Hu
will help eq. (7.4) to be satisfied, it is not strictly necessary.

Furthermore, even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if
b is too small. Still, the large negative contributions to m2

Hu
from the RG equation are an important

factor in ensuring that electroweak symmetry breaking can occur in models with simple boundary
conditions for the soft terms. The realization that this works most naturally with a large top-quark
Yukawa coupling provides additional motivation for these models [180, 151].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = 〈H0
u〉, vd = 〈H0

d 〉. (7.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2. (7.6)

66

The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (7.7)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sin β and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can write
down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (7.2) will have a minimum

satisfying eqs. (7.6) and (7.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (7.8)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (7.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (7.3) and (7.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
determine the phase of µ. Taking |µ|2, b, m2

Hu
and m2

Hd
as input parameters, and m2

Z and tan β as
output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+ m2
Hd

+ 2|µ|2
, (7.10)

m2
Z =

|m2
Hd

− m2
Hu

|
√

1 − sin2(2β)
− m2

Hu
− m2

Hd
− 2|µ|2. (7.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (7.10) and (7.11) highlight the “µ problem” already mentioned in section 5.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see section 10.2
and refs. [66]-[68] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (7.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (7.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) +

2

tan2 β
(m2

Hd
− m2

Hu
) + O(1/ tan4 β). (7.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signif-

icant cancellation is needed. In particular, large top squark squared masses, needed to avoid having
the Higgs boson mass turn out too small [see eq. (7.25) below] compared to the direct search limits
from LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the

several per cent level. It is impossible to objectively characterize whether this should be considered
worrisome, but it could be taken as a weak hint in favor of non-minimal models.

The discussion above is based on the tree-level potential, and involves running renormalized La-
grangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V + ∆V as a
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then the constraints eqs. (7.3) and (7.4) cannot both be satisfied. In

models derived from the minimal supergravity or gauge-mediated boundary conditions, m2
Hu

= m2
Hd

is

supposed to hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (5.61)] naturally pushes it to negative or small values m2
Hu

< m2
Hd

at the electroweak scale. Unless
this effect is significant, the parameter space in which the electroweak symmetry is broken would
be quite small. So in these models electroweak symmetry breaking is actually driven by quantum
corrections; this mechanism is therefore known as radiative electroweak symmetry breaking. Note that
although a negative value for |µ|2 + m2

Hu
will help eq. (7.4) to be satisfied, it is not strictly necessary.

Furthermore, even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if
b is too small. Still, the large negative contributions to m2

Hu
from the RG equation are an important

factor in ensuring that electroweak symmetry breaking can occur in models with simple boundary
conditions for the soft terms. The realization that this works most naturally with a large top-quark
Yukawa coupling provides additional motivation for these models [180, 151].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = 〈H0
u〉, vd = 〈H0

d 〉. (7.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2. (7.6)
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The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (7.7)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sin β and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can write
down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (7.2) will have a minimum

satisfying eqs. (7.6) and (7.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (7.8)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (7.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (7.3) and (7.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
determine the phase of µ. Taking |µ|2, b, m2

Hu
and m2

Hd
as input parameters, and m2

Z and tan β as
output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+ m2
Hd

+ 2|µ|2
, (7.10)

m2
Z =

|m2
Hd

− m2
Hu

|
√

1 − sin2(2β)
− m2

Hu
− m2

Hd
− 2|µ|2. (7.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (7.10) and (7.11) highlight the “µ problem” already mentioned in section 5.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see section 10.2
and refs. [66]-[68] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (7.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (7.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) +

2

tan2 β
(m2

Hd
− m2

Hu
) + O(1/ tan4 β). (7.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signif-

icant cancellation is needed. In particular, large top squark squared masses, needed to avoid having
the Higgs boson mass turn out too small [see eq. (7.25) below] compared to the direct search limits
from LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the

several per cent level. It is impossible to objectively characterize whether this should be considered
worrisome, but it could be taken as a weak hint in favor of non-minimal models.

The discussion above is based on the tree-level potential, and involves running renormalized La-
grangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V + ∆V as a
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−

d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−

d C̃±
1 C̃±

2

gluino 1/2 −1 g̃ (same)

goldstino
(gravitino)

1/2
(3/2) −1 G̃ (same)

Table 7.1: The undiscovered particles in the Minimal Supersymmetric Standard Model (with sfermion
mixing for the first two families assumed to be negligible).

implying that a squark or charged slepton gets a VEV, breaking SU(3)C or electromagnetism. Since
this is clearly unacceptable, one can put bounds on the (scalar)3 couplings, or equivalently on the
parameter A0 in minimal supergravity models. Even if all of the squared-mass eigenvalues are positive,
the presence of large (scalar)3 couplings can yield global minima of the scalar potential, with non-zero
squark and/or charged slepton VEVs, which are disconnected from the vacuum that conserves SU(3)C
and electromagnetism [202]. However, it is not always immediately clear whether the mere existence
of such disconnected global minima should really disqualify a set of model parameters, because the
tunneling rate from our “good” vacuum to the “bad” vacua can easily be longer than the age of the
universe [203].

7.5 Summary: the MSSM sparticle spectrum

In the MSSM there are 32 distinct masses corresponding to undiscovered particles, not including the
gravitino. In this section we have explained how the masses and mixing angles for these particles can
be computed, given an underlying model for the soft terms at some input scale. Assuming only that
the mixing of first- and second-family squarks and sleptons is negligible, the mass eigenstates of the
MSSM are listed in Table 7.1. A complete set of Feynman rules for the interactions of these particles
with each other and with the Standard Model quarks, leptons, and gauge bosons can be found in
refs. [25, 182]. Feynman rules based on two-component spinor notation have also recently been given
in [199].

Specific models for the soft terms typically predict the masses and the mixing angles angles for
the MSSM in terms of far fewer parameters. For example, in the minimal supergravity models, the
only free parameters not already measured by experiment are m2

0, m1/2, A0, µ, and b. In gauge-
mediated supersymmetry breaking models, the free parameters include at least the scale Λ, the typical
messenger mass scale Mmess, the integer number N5 of copies of the minimal messengers, the goldstino
decay constant 〈F 〉, and the Higgs mass parameters µ and b. After RG evolving the soft terms down
to the electroweak scale, one can demand that the scalar potential gives correct electroweak symmetry
breaking. This allows us to trade |µ| and b (or B0) for one parameter tan β, as in eqs. (7.9)-(7.8). So, to
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Physical spectrum (mass eigenstates) comes from a mixture of the gauge eigenstates:
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MSSM 
sector

SUSY 
sector

The idea of mediation:

Mediating 
sector

Supertrace sum rules (Dimopoulos Georgi) mean breaking in visible sector difficult
Mediating sector can be gauge, gravity, anomaly etc

extension beyond the conventional MSSM, merely an ISS-like O’Raifeartaigh potential for the Higgs

sector and some extra generations of Higgs fields to cause SU(2)L to become strongly coupled at ΛL.

At first sight our proposal seems bound to fail because of two familiar “no-go” theorems. The

first is the theorem by Nelson and Seiberg [14] that SUSY breaking in a generic theory requires an

R-symmetry (where generic means that all operators that are allowed by symmetries appear in the

superpotential). This appears to exclude the possibility of non-zero gaugino Majorana masses since

they are inconsistent with an unbroken R-symmetry. A spontaneously broken R-symmetry on the

other hand implies a massless R−axion which is disallowed on cosmological grounds [15]. The second

is a no-go theorem [16] coming from the well-known sum-rule STr(M2) = 0. This relation holds at

tree-level even when SUSY is spontaneously broken, and can be applied to differently charged fields

independently, so that for example it predicts m2
d̃

+ m2
s̃ + m2

b̃
∼ (5GeV)2, obviously completely at

odds with experiment [17]. To avoid this tree-level mass relation one has to generate SUSY breaking

terms of order ∼TeV at one-loop or higher. This implies that the F -term vev responsible for SUSY

breaking must be at least 100 TeV2 as is the case in gauge mediated SUSY breaking for example. Say

the vev of the Higgs fields breaking electroweak symmetry is µ ∼ g−1
2 MW . Then since we want to

induce SUSY breaking and electroweak symmetry breaking with the same field this implies F = hµ2

where h is some coupling constant which clearly has to be much greater than one. How can such large

couplings - and this is the essence of the problem - be consistent in a calculable theory? We will show

that both of these theorems are evaded by the special properties of MSB models.

The first crucial point is that, as pointed out by ISS, metastable models do not have to adhere

to the Nelson-Seiberg theorem because they have supersymmetric vacua, and indeed in ISS-type

models they violate it in an interesting way; the theory at the metastable minimum resembles a

standard O’Raifeartaigh model, SUSY is broken and there is a global R-symmetry. However the

global supersymmetric minima are recovered by a nonperturbative dynamical term that is generated

by the SU(2)L gauge symmetry. The R-symmetry is anomalous under this SU(2)L group and therefore

the dynamical term does not respect it. This strongly suggests that other sectors of the theory may

dynamically produce R-symmetry violating operators as well whilst leaving supersymmetry intact

(as for example the magnetic theory does in the supersymmetric minima). Depending on how the

breaking is mediated to the magnetic theory, one does not expect all possible operators to be generated

at leading order. The resulting effective superpotential of the IR theory can be only approximately

nongeneric, and metastability can still be preserved. (Note that we emphasize “at leading order”; if

those operators that destabilize the metastable minimum are small enough, then the decay time of

the false vacuum is still sufficiently long to avoid the possibility of decay within the lifetime of the

Universe.) The nett effect can be the lifting of the R-axion masses, and the radiative generation of

large gaugino masses.

In ISS-type models, the breaking of both gauge symmetry and SUSY at the metastable minimum,

can be traced back to the gauge singlet field Φj
i (i, j are ISS-sector flavour indices) of R-charge 2.

As already stated, we will require that R-symmetry is broken in the full theory, but that this must

electric theory above ΛL can be a string or a field theory which is related to our magnetic theory below ΛL in some way,

possibly involving a generalisation of Seiberg duality [13].
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In this model a linear combination of            is a Goldstino (pseudo-flat scalar 
direction and massless fermion)

In supergravity (when we gauge the whole superspace) the Goldstino is eaten by 
the gravitino 
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Gravity mediation: suppose that the Kahler potential has Planck 
suppressed operators and that this is the only sort of coupling to a 
hidden SUSY breaking sector with non-zero F-terms: 
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MSSM 
sector

SUSY 
sector

Mediating 
sector = f,f

Giudice Rattazzi Phys Rep 1999

Universal form for gaugino and sfermion masses - of same order

Gauge mediation: Low scale mediation. If SUSY is not hidden then this 
will be the dominant effect.  

~

D′ = D

U ′ = VCKMU

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ
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The idea of mediation:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Two-loop diagrams contributing to the sfermion masses. The long dashed (solid) line is a
bosonic (fermionic) messenger. Standard model sfermions are depicted by short dashed lines.

additional minus-sign between chiral and antichiral fields. In field space this corresponds to a
vertex that is proportional to a matrix VD = diag(1, 1,−1,−1). We therefore obtain,

Fig. 5(g) =
∑

i,m

(QT VDQ)i,mJ(m̂0,m, m̂0,i)(Q
T VDQ)m,i, (69)

where J is the appropriate two-loop integral for Fig. 5(g) which can be found in [40].

Finally, in 5(h) we have a mixed boson/fermion loop. The subdiagram containing the
messengers is similar to the diagram for the gaugino mass. The only difference is the direction of
the arrows on the gaugino lines. Indeed the one-loop sub-diagram corresponds to a contribution
to the kinetic term rather than a mass term for the gauginos. (The mass term will of course
contribute as well but will be suppressed by quark masses.) Using Eq. (43) we find,

Fig. 5(h) =
∑

ik

(|U †
i1Q1k + U †

i2Q2k|2 + |Q†
k3V1i + Q†

k4V2i|2)L(m̂1/2,i, m̂
2
0,k) , (70)

where L is again the appropriate loop integral from [40].

Summing over all diagrams we find the sfermion masses which are typically significantly
larger than the gaugino masses calculated earlier. Indeed, the scalar masses roughly follow the
estimate

m2
f̃
∼

g4

(16π2)2
µ2. (71)

This is precisely the leading order effect which in our direct mediation scenario is absent for the
gaugino masses.

So far we have taken into account the ρ, Z (or similarly the σ,M) contributions which as we
just explained give a non-vanishing leading order effect. In distinction to our earlier calculation
of the gaugino masses we do not need to include the sub-dominant contributions from other
messengers (which were massless at tree-level)9.

9Inclusion of such effects would be actually not completely straightforward because our mass-insertion tech-
nique breaks down when used in the two-loop diagrams for the scalars. The reason for this can be traced to the
non-cancelation of the UV cutoff dependent terms. This problem would disappear if one performs a complete
higher-loop calculation. In any case since the leading order result for scalars was non-vanishing we do not expect
any significant changes from this.

20

Tr(τ〈FΦ〉)

Tr(τ〈Φ〉)

Figure 1: One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)
line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the
F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion
of the R-symmetry breaking VEV into the propagator of the fermionic messengers.

This can be seen to result from the minimization of the tree-level potential with respect to A
for a given B VEV:

∂V

∂A
= λBTr(F †

Φ) = 0 . (30)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-degenerate
couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (31)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking
mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations such
as Tr(F †

Φ) = 0 are no longer expected to hold (for example, with the unconstrained values in the

table we find Tr(F †
Φ) = −0.034µ2

X ): typically one finds Tr(F †
Φ) = µ2/(16π2), since the effective

F -term for mediation is one-loop suppressed. Thus when the τ are degenerate one can still get

mλ ∼ µ2

16π2Mf

g2

(16π2) ∼ 1 TeV if µ2/Mf ∼ 107 GeV.

3.2 Direct gauge mediation

Now, let us compute gaugino masses for the direct gauge mediation scenario from the meson-
deformed ISS sector. We first consider the effects of those direct messengers which obtain R-
symmetry breaking masses at tree-level and which couple directly to the largest F -terms. These
transform in the fundamental representation of the SM gauge groups, and this constitutes a
strictly one-loop and formally leading order effect. Then we will include additional, formally
higher-loop, contributions from the pseudo-Goldstone modes transforming in both adjoint and
(bi-)fundamental representations of the Standard Model gauge groups. It will turn out that the
latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,
baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji + Wmeson−def(Aa,Φ) + Wbaryon−def(Aa,φ, φ̃) (32)

12
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Gauge mediation: Low scale mediation. If SUSY is not hidden then this 
will be the dominant effect.  
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MSSM 
sector

SUSY 
sector

SUSY breaking dynamics now important; can have much smaller gaugino masses
Poppitz Trivedi (1996) ....
Izawa, Momura, Tobe, Yanagida (1997)
Csaki, Shirman, Terning (2006)
Kitano Ooguri Ookouchi (2006)
SAA, Durnford, Jaeckel, Khoze (2007)
SAA, Jaeckel, Khoze, Matos (2008)

Direct Gauge mediation: Try to embed the messengers in the SUSY 
breaking dynamics.  
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Maede, Seiberg, Shih, 2008

The idea of mediation:

General Gauge mediation: suppose strong coupling enters the story. What can we say?
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Known 
known

Unknown 
unknown

Unknown 
known

Maede, Seiberg, Shih, 2008

Only constrained by the requirement that the MSSM becomes decoupled from SUSY 
breaking sector when 

Wcl =
1

µ
Mq.q̃ −mQM

Wcl =
1

µ
Mijqi.q̃j −mQMii +mεabεrsq

a
r q

b
s

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(M + θ2F )

α1 = α2 = α3 = 0
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• The possible patterns of SUSY breaking (in the MSSM) can be 
completely determined by 6 combinations of gauge current 
correlators: sum rules 

• But what patterns are likely?

• What underlying physics is associated with each pattern?

• Clear objective: strategy for GMSB phenomenology at early LHC? 

4. Mass relations

4.1. Relations at the scale M

In the previous section, we have seen how all the MSSM sfermion masses are com-

pletely determined in terms of four real numbers (ζ, A1, A2, A3) which are derived from

correlation functions in the SUSY-breaking sector. In this section, we analyze how this

general result constrains the MSSM spectrum and leads to definite relations among the

sfermion masses. We first consider the commonly assumed case ζ = 0. Then there must

be two relations amongst the sfermion soft masses which are valid in general. These mass

relations can be easily derived by using the facts that each generation of the MSSM is

separately anomaly free in U(1)Y , and the mixed U(1)B−L – gauge anomalies also vanish.

From the general form of the sfermion masses (3.5), it follows that

TrY m2 = Tr (B − L)m2 = 0 (4.1)

where the trace is over the MSSM sfermions in a given generation, and Y and B−L stand

for the hypercharge and U(1)B−L quantum numbers of the given sfermion, respectively.

More explicitly, the mass relations are given by

m2
Q − 2m2

U + m2
D − m2

L + m2
E = 0

2m2
Q − m2

U − m2
D − 2m2

L + m2
E = 0

(4.2)

These relations have been derived before in the context of various specific SUSY-breaking

models (see e.g. [22-26]). More recently, they have been discussed in [19] in the context

of models with strong hidden sector renormalization effects. However, as our discussion

makes clear, these relations are completely general features of gauge mediation, which do

not depend on any specific form of the hidden or messenger sector (indeed, there need not

even be any invariant distinction between the two). Thus, these relations offer a completely

model independent test of gauge mediation which could in principle be carried out at the

LHC or the ILC. Moreover, these sum rules could in principle be used to distinguish gauge

mediation from other popular mediation schemes. In particular, the B − L mass relation

is violated in mSUGRA and various modifications of anomaly mediation which fix the

slepton mass problem.

Next let us discuss the case that ζ "= 0. Then there should only be one relation

amongst the sfermion soft masses. Indeed, it follows immediately from (3.5) that

Tr Y m2 − g2
1ζTrY 2 = 0

Tr (B − L)m2 − g2
1ζTr (B − L)Y = 0

(4.3)
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• How hidden is hidden? Does SUSY breaking itself influence phenomenology?

• Direct mediation is clearly completely different for example - why?

• What underlying physics gives rise to what patterns?

• Clear objective: strategy for GMSB phenomenology at early LHC? 

Summary of Questions:
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To help us answer these questions now turn 
to a simple dynamical model of (metastable) 

SUSY breaking (ISS)
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Based on Seiberg duality: the electric model consists of ...

The gauge coupling runs as

ISS meta-stable models

Content of the microscopic “electric model” (Intriligator, Seiberg, Shih

hep-th/0602239)

N = 1 gauge SU(Nc)

mesons QjQ̃j ; i, j = 1 . . . Nf

fundamental electric quarks Qa
i ; a = 1 . . .Nc

antifundamentals (Dirac mass mQ) Q̃i
a

If the beta function is negative b0 = 3Nc − Nf > 0 then the gauge

coupling

e−8π2/g2(E) =

(

E

Λ

)−b0

is strongly coupled in the IR (Λ is the Landau pole).

Dual and deflected Unification – p.3

If the beta-function is negative       "                               then hit Landau pole 

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

1

ISS metastable SUSY breaking

Wel = s0X
k+1 + s1X

k + . . . sk+1

Weff ⊃ hdhd

MGUT
εijkE

cU c
i U

c
jD

c
k

Wmag = hϕq.q̃

Φ = M/Λ

h ∼ 1
3N

2
< FQ < 3N

N + 1 < FQ <
3

2
N

FQ < N

FQ = N

FQ = N + 1

FQ ≥ 3N

SU(FQ)× SU(FQ)× U(1)B × U(1)R

N = 1 gauge SU(n) n = FQ −N
singlet mesons ϕ = QQ̃/Λ

FQ quark and antiquarks q, q̃
Superpotential Wcl = qϕq̃ − µ2

ISSϕ µ2
ISS = −(mQΛ)

..

N = 1 gauge SU(n) n = FQ −N
singlet mesons ϕ = QQ̃/Λ

FQ quark and antiquarks q, q̃
Superpotential Wcl = qϕq̃ +mQΛϕ

.

N = 1 gauge SU(N) N = FQ − n
singlet mesons Φ = −qq̃/Λ ; ϕ

FQ quark and antiquarks Q, Q̃
Superpotential W ′

elec = Q̃ΦQ − ΛΦϕ+mQΛϕ

..

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential Welec = mQQQ̃

.

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential W ′
elec = mQΛQQ̃

.

W ⊃ λuQHU c + λdQH̃Dc...

L ⊃ λuqhu
c + λdqh̃d

c...

muij ∼ 〈H〉
〈

φ
MX

〉−(qH+qi+qj)/qφ
mu ∼ λu〈h〉

1
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The magnetic model found by matching moduli spaces (baryons) and 
global anomalies is

Runs to weak coupling in IR if                               ,  so strong->IR-free if
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through a finite transformation, ξα+ ξα+ ... =

θα? This can be written,

Φ = eδθ ϕ

Another exercise;

Φ = (1+ δθ +
1
2!δ

2
θ + ...)ϕ(x)

= ϕ(y) +
√
2θχ(y) + θθF(y)

where yµ = xµ + iθσµθ. Note that θθ × θα = 0

because only two components in θα and they

anticommute. i.e. Φ(θ, y). Any function of Φ

has the same transformation properties – i.e.

its θθ term is a total derivative.

So the F -term of any function of superfields

(superpotential) is a suitable Lagrangian;

L = W |θθ + h.c.
int

Using an extremely important global U(1) symmetry of supersymmetric 
theories: 

R-symmetry

Metastability and Nelson-Seiberg

• Consider low-energy, calculable models of SUSY breaking

• The potential is V = |Fi|2 = | ∂W
∂Φi

|2

• Q: When is SUSY broken? i.e. when does Fi = 0 not have

solutions for all i?

• A: (Nelson-Seiberg) In a generic theory, when there is an

R-symmetry.

Φi → eiRiαΦi

θ → eiαθ

W → e2iαW

Progress in SUSY breaking – p.4

 Many tests e.g.1 : ‘t Hooft anomaly matching ...

Tests of Seiberg duality
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 Many tests e.g.1 : ‘t Hooft anomaly matching ...

Tests of Seiberg duality

SU(FQ) SU(FQ) U(1)B U(1)R

Q 1 1
N

1− N
Nf

Q̃ 1 ˜ − 1
N

1− N
Nf

Table 1: Spectrum and anomaly free charges in SQCD0.

SU(FQ) SU(FQ) U(1)B U(1)R

q ˜ 1 1
n

1− n
Nf

q̃ 1 − 1
n

1− n
Nf

ϕ ˜ 0 2 n
Nf

Table 2: Spectrum and anomaly free charges in SQCD0̃.

Note that this U(1)_R is the “exact” R-symmetry related to the dimensions of 
operators at fixed points as R = 2/3 x Dimension 
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6.5 Duality

In a conformal theory (even if it is strongly coupled) we don’t expect any
global symmetries to break, so ‘t Hooft anomaly matching should apply to
any description of the low-energy degrees of freedom. The anomalies of the
mesons and baryons described above do not match to those of the quarks and
gaugino. However Seiberg [29] found a non-trivial solution to the anomaly
matching using a “dual” SU(F − N) gauge theory with a “dual” gaugino,
“dual” quarks and a gauge singlet “dual mesino” with the following quantum
numbers29:

SU(F − N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

mesino 1 0 2 F−N
F

(6.73)

In the language of duality the dual quarks can be thought of as “mag-
netic” quarks, in analogy with the duality between electrons and magnetic
monopoles.

The anomalies of the two dual theories match as follows:

SU(F )3 : −(F − N) + F = N

U(1)SU(F )2 :
N

F − N

(F − N)
1

2
=

N

2

U(1)RSU(F )2 :
N − F

F

(F − N)
1

2
+

F − 2N

F

F

1

2
= −N

2

2F
U(1)3 : 0

U(1) : 0

U(1)U(1)2
R : 0

U(1)R :
(

N − F

F

)
2(F − N)F +

(
F − 2N

F

)
F

2 + (F − N)2 − 1

= −N

2 − 1

U(1)3
R :

(
N − F

F

)3

2(F − N)F +
(

F − 2N

F

)3

F

2 + (F − N)2 − 1

= −2N4

F

2
+ N

2 − 1

29As usual only the R-charge of the scalar component is given, and R[fermion] =
R[scalar] − 1.
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N = 1 gauge SU(n) n = FQ −N
singlet mesons ϕ = QQ̃/Λ

FQ quark and antiquarks q, q̃
Superpotential Wcl = qϕq̃ +mQΛϕ

.

N = 1 gauge SU(N) N = FQ − n
singlet mesons Φ = −qq̃/Λ ; ϕ

FQ quark and antiquarks Q, Q̃
Superpotential W ′

elec = Q̃ΦQ − ΛΦϕ+mQΛϕ ≡ Welec

..

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential Welec = mQQQ̃

.

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential W ′
elec = mQΛQQ̃

.

W ⊃ λuQHU c + λdQH̃Dc...

L ⊃ λuqhu
c + λdqh̃d

c...

muij ∼ 〈H〉
〈

φ
MX

〉−(qH+qi+qj)/qφ
mu ∼ λu〈h〉

1

 Many tests e.g.2 : Dual-of-dual-of-theory = theory

Tests of Seiberg duality
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The magnetic model found by matching moduli spaces (baryons) and 
global anomalies is

Runs to weak coupling in IR if                               ,  so strong->IR-free if

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

1

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

N + 1 ≤ FQ ≤
3

2
N

1

Wel = s0X
k+1 + s1X

k + . . . sk+1

Weff ⊃ hdhd

MGUT
εijkE

cU c
i U

c
jD

c
k

Wmag = hϕq.q̃

Φ = M/Λ

h ∼ 1
3N

2
< FQ < 3N

N + 1 < FQ <
3

2
N

FQ < N

FQ = N

FQ = N + 1

FQ ≥ 3N

SU(FQ)× SU(FQ)× U(1)B × U(1)R

N = 1 gauge SU(n) n = FQ −N
singlet mesons ϕ = QQ̃/Λ

FQ quark and antiquarks q, q̃
Superpotential Wcl = qϕq̃ − µ2

ISSϕ µ2
ISS = −(mQΛ)

..

N = 1 gauge SU(n) n = FQ −N
singlet mesons ϕ = QQ̃/Λ

FQ quark and antiquarks q, q̃
Superpotential Wcl = qϕq̃ +mQΛϕ

.

N = 1 gauge SU(N) N = FQ − n
singlet mesons Φ = −qq̃/Λ ; ϕ

FQ quark and antiquarks Q, Q̃
Superpotential W ′

elec = Q̃ΦQ − ΛΦϕ+mQΛϕ

..

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential Welec = mQQQ̃

.

N = 1 gauge SU(N)
FQ quark and antiquarks Q, Q̃

Superpotential W ′
elec = mQΛQQ̃

.

W ⊃ λuQHU c + λdQH̃Dc...

L ⊃ λuqhu
c + λdqh̃d

c...

muij ∼ 〈H〉
〈

φ
MX

〉−(qH+qi+qj)/qφ
mu ∼ λu〈h〉

1

ISS metastable SUSY breaking
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The magnetic model characteristics given by

Characteristics of the IR theory

Magnetic theory contains tree-level plus ADS like dynamically

generated term W = Wcl + Wdyn:

Wcl = hTrFQ
(qMq̃) − hµ2

ISSTrFQ
M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n

where µ2
ISS ≈ mQΛ.

Dual and deflected Unification – p.6
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Wcl = hTrFQ
(qMq̃) − hµ2
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M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n
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ISS ≈ mQΛ.

Dual and deflected Unification – p.6
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Magnetic theory contains tree-level plus ADS like dynamically

generated term W = Wcl + Wdyn:

Wcl = hTrFQ
(qMq̃) − hµ2

ISSTrFQ
M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n

where µ2
ISS ≈ mQΛ.

Dual and deflected Unification – p.6

ISS metastable SUSY breaking

D′ = D

U ′ = VCKMU

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = ϕq.q̃ − µ2
ISSϕ

Wdyn = N

(

detFQ ϕ

ΛFQ−3n

)1/n

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

2

D′ = D

U ′ = VCKMU

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = ϕq.q̃ − µ2
ISSϕ

Wdyn = N

(

detFQ ϕ

ΛFQ−3n

)1/n

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

2
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Letʼs understand the form of the potential a):

Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) $= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac〉0:
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Dual and deflected Unification – p.8

Characteristics of the IR theory

Magnetic theory contains tree-level plus ADS like dynamically

generated term W = Wcl + Wdyn:

Wcl = hTrFQ
(qMq̃) − hµ2

ISSTrFQ
M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n

where µ2
ISS ≈ mQΛ.

Dual and deflected Unification – p.6

ISS metastable SUSY breaking

Potential without 

D′ = D

U ′ = VCKMU

√
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mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√
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mc
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mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = ϕq.q̃ − µ2
ISSϕ

Wdyn = N

(

detFQ ϕ

ΛFQ−3n

)1/n

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

2

Near origin can ignore            so that            

D′ = D

U ′ = VCKMU

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = ϕq.q̃ − µ2
ISSϕ

Wdyn = N

(

detFQ ϕ

ΛFQ−3n

)1/n

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

2

108

ϕ = (QQ̃)/Λ

W = q
QQ̃

MX
uc =

Λ

MX
qϕuc

∆ = 4

O = T µν ! gµν
〈

T
{

exp

(
∫

ddxJ4dO(x)

)}〉

CFT

= ZAdS

[

lim
boundary

J z∆−d = J4d

]

M2
λ̃
∼ Nmessm

2
f̃

〈Φ〉 = mQ

mQ = ΛIR

WCFT ⊃ ΦQQ̃

Mgaugino % mscalar

V =

∣

∣

∣

∣

∂W

∂Φi

∣

∣

∣

∣

2

LKE = K(Φi, Φ̄
j)|θ2θ̄2 =

∂K

∂Φi∂Φ̄j
∂µϕi∂

µϕj∗ + . . .

K ⊃ ϕϕ†

M2
P

ϕvisϕ
†
vis

LKE = K(Φi, Φ̄
j)|θ2θ̄2 ⊃ |Fϕ|2

M2
P

ϕvisϕ
†
vis

W = λuQHuU
c + λdQHdD

c + λeLHdE
c

+µHuHd

+λSHuHd + κS3

Wsusy−break = hϕϕ2
1 +mϕ1ϕ2 − µ2ϕ

Fϕ = (
∂W

∂ϕ
)∗ = hϕ2

1 − µ2

Fϕ1
= 2hϕϕ1 −mϕ2

Fϕ2
= mϕ1

ϕ1,ϕ

tanβ, A0, m0, m1/2

Fϕ ∼ mWMP

V ≈ |∂ϕWcl|2 = |q.q̃ − µ2
ISS |2

K ⊃ ϕ†

MP
HuHd +

ϕϕ†

M2
P

HuHd + h.c.

4

Cannot solve V=0 because of Rank Condition: this is an OʼR model!! 
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The metastable vacuum characterized by SU(n) being completely
 Higgsed at the origin  

ISS metastable SUSY breaking

Can also be shown that there are no tachyons at one loop. 

Characteristics of the IR theory

Metastable vacuum characterized by

〈q〉 = 〈q̃〉 = µ





1n

0FQ−n



 ; 〈ϕ〉 = 0

V+ = (FQ − n) |µ4|

Can also be shown (ISS) that there are no tachyons at one loop
Note that the SU(N) theory is completely Higgsed near the origin

Metastable SUSY breaking: cosmology and phenomenology – p.11
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More on the dynamical term 

• Consider giving a VEV to 

• then                        and we can integrate out the quarks

• The beta function reverses sign since now no matter, and the theory confines       
   with 

• Integrate out the heavy quarks and match the theories at their mass scale

ISS metastable SUSY breaking

D′ = D

U ′ = VCKMU

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ12 ∼ η

√

mc

mt
∼ mµ

mτ
∼

√
3ms

mb
∼ sin θ23 ∼ ε

√

mu

mc
∼ me

mµ
∼ md

ms
∼ sin θ13 ∼ sin θ12 sin θ23 ∼ ηε

mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
GUT ! 4 log(Λ/µISS) + 5 log(MGUT /µISS)

µISS " 4× 105Gev

Wcl = ϕq.q̃ − µ2
ISSϕ

Wdyn = N

(

detFQ ϕ

ΛFQ−3n

)1/n

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )

α1 = α2 = α3 = 0

2

And the SUSY preserving minima?

Consider giving a VEV to ϕ...

• Then mq,mq̃ = ϕ and we can integrate out q, q̃.

• The β-function reverses sign since now FQ = 0 and theory
confines withWdyn = Λ3

• Indeed the non-perturbative contribution to superpotential is
determined by integrating out heavy q and q̃ modes;

W = Wcl +Wdyn

Wdyn = N

(

hNfdetNf
Φ

ΛNf−3N

)
1

N

Metastable SUSY breaking: cosmology and phenomenology – p.12
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• Then mq,mq̃ = ϕ and we can integrate out q, q̃.

• The β-function reverses sign since now FQ = 0 and theory
confines withWdyn = Λ3

• Indeed the non-perturbative contribution to superpotential is
determined by integrating out heavy q and q̃ modes;

W = Wcl +Wdyn

Wdyn = N

(

hNfdetNf
Φ

ΛNf−3N

)
1

N

Metastable SUSY breaking: cosmology and phenomenology – p.12
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ISS metastable SUSY breaking

And the SUSY preserving minima?

SUSY preserving minima |vac〉0 at

〈q〉 = 〈q̃〉 = 0 ; 〈ϕ〉 = ϕ01FQ

ϕ0 = µ

(

ε
FQ−3n

FQ−n

)

−1

# µ

ε = µ/Λ

Have
Λ # Φ0 # µ

so the minima are below Λ but the potential is very shallow

Metastable SUSY breaking: cosmology and phenomenology – p.13
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Letʼs understand the form of the potential b):

ISS metastable SUSY breaking

Actually we could have guessed that the theory would generate a            
that restored supersymmetry!

D′ = D

U ′ = VCKMU
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∼ md
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ISSϕ
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)1/n
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ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)
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(
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− p

)
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2

Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:
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ISS metastable SUSY breaking

Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:

                                                                                                                                                                       
Want to not be able to solve:                                                                                                                                                                                    

In what follows we shall assume that the gauge dynamics was integrated out. Suppose

we have a low-energy theory with a superpotential W ({Xi}), where Xi are chiral fields and

i = 1 . . . n. For supersymmetry to remain unbroken, the superpotential should be extremal

with respect to all fields,
∂W

∂Xi
= 0 .

If the theory has no symmetries, the number of unknowns, Xi, equals the number of equa-

tions. Similarly, if the theory has a global symmetry that commutes with supersymmetry,

the number of equations equals the number of unknowns. To see this note that in this case,

the superpotential can only depend on chiral field combinations that are invariant under the

symmetry. Therefore, if there are k symmetry generators, the superpotential depends on

n− k invariant quantities (for example, for a U(1) symmetry these could be Xi/X
qi
q1
1 , where

i = 2 . . . n, and qi, q1 are the U(1) charges of Xi, X1 respectively) while the remaining k

fields do not appear in the superpotential. Thus, for supersymmetry to remain unbroken the

superpotential should be extremal with respect to n−k variables, leading to n−k equations

in n − k unknowns. Thus, generically, there is a solution and supersymmetry is unbroken.

In contrast, suppose the theory has an R symmetry that is spontaneously broken. Then

there is a field, X, with R charge q "= 0, which gets a non-zero vev. The superpotential then

can be written as

W = X2/qf(Yi = Xq
i /X

qi) ,

where qi is the charge of Xi. For supersymmetry to be unbroken we need

∂f

∂Yi
= 0 ,

and

f = 0 .

Thus there is one more equation than unknowns, and generically we do not expect a solution.

Roughly speaking, what we mean by “generically” is that the superpotential is a generic

function of the fields, that is, it contains all terms allowed by the symmetries. We shall

return to this point shortly.

31

If there are k normal U(1) symmetries then the superpotential can be 
written as a function of the n-k invariants: 

In what follows we shall assume that the gauge dynamics was integrated out. Suppose

we have a low-energy theory with a superpotential W ({Xi}), where Xi are chiral fields and

i = 1 . . . n. For supersymmetry to remain unbroken, the superpotential should be extremal

with respect to all fields,
∂W

∂Xi
= 0 .

If the theory has no symmetries, the number of unknowns, Xi, equals the number of equa-

tions. Similarly, if the theory has a global symmetry that commutes with supersymmetry,

the number of equations equals the number of unknowns. To see this note that in this case,

the superpotential can only depend on chiral field combinations that are invariant under the

symmetry. Therefore, if there are k symmetry generators, the superpotential depends on

n− k invariant quantities (for example, for a U(1) symmetry these could be Xi/X
qi
q1
1 , where

i = 2 . . . n, and qi, q1 are the U(1) charges of Xi, X1 respectively) while the remaining k

fields do not appear in the superpotential. Thus, for supersymmetry to remain unbroken the

superpotential should be extremal with respect to n−k variables, leading to n−k equations

in n − k unknowns. Thus, generically, there is a solution and supersymmetry is unbroken.

In contrast, suppose the theory has an R symmetry that is spontaneously broken. Then

there is a field, X, with R charge q "= 0, which gets a non-zero vev. The superpotential then

can be written as

W = X2/qf(Yi = Xq
i /X

qi) ,

where qi is the charge of Xi. For supersymmetry to be unbroken we need

∂f

∂Yi
= 0 ,

and

f = 0 .

Thus there is one more equation than unknowns, and generically we do not expect a solution.

Roughly speaking, what we mean by “generically” is that the superpotential is a generic

function of the fields, that is, it contains all terms allowed by the symmetries. We shall

return to this point shortly.

31

If there are no symmetries and n fields then we have n equations and n 
unknowns

Thus n-k equations in n-k unknowns
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ISS metastable SUSY breaking

Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:

                                                                                                                                                                       
But if we have a spontaneously broken R-symmetry then we must have 
at least one field with non-zero R-charge and we can write 

In what follows we shall assume that the gauge dynamics was integrated out. Suppose

we have a low-energy theory with a superpotential W ({Xi}), where Xi are chiral fields and

i = 1 . . . n. For supersymmetry to remain unbroken, the superpotential should be extremal

with respect to all fields,
∂W

∂Xi
= 0 .

If the theory has no symmetries, the number of unknowns, Xi, equals the number of equa-

tions. Similarly, if the theory has a global symmetry that commutes with supersymmetry,

the number of equations equals the number of unknowns. To see this note that in this case,

the superpotential can only depend on chiral field combinations that are invariant under the

symmetry. Therefore, if there are k symmetry generators, the superpotential depends on

n− k invariant quantities (for example, for a U(1) symmetry these could be Xi/X
qi
q1
1 , where

i = 2 . . . n, and qi, q1 are the U(1) charges of Xi, X1 respectively) while the remaining k

fields do not appear in the superpotential. Thus, for supersymmetry to remain unbroken the

superpotential should be extremal with respect to n−k variables, leading to n−k equations

in n − k unknowns. Thus, generically, there is a solution and supersymmetry is unbroken.

In contrast, suppose the theory has an R symmetry that is spontaneously broken. Then

there is a field, X, with R charge q "= 0, which gets a non-zero vev. The superpotential then

can be written as

W = X2/qf(Yi = Xq
i /X

qi) ,

where qi is the charge of Xi. For supersymmetry to be unbroken we need

∂f

∂Yi
= 0 ,

and

f = 0 .

Thus there is one more equation than unknowns, and generically we do not expect a solution.

Roughly speaking, what we mean by “generically” is that the superpotential is a generic

function of the fields, that is, it contains all terms allowed by the symmetries. We shall

return to this point shortly.

31

For SUSY to be unbroken we now need to solve n equations for n-1 
unknowns 
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Letʼs understand the form of the potential b):

ISS metastable SUSY breaking

Actually we could have guessed that the theory would generate a            
that restored supersymmetry!
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U ′ = VCKMU
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∼ md
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√

mc
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mτ
∼

√
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√
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∼ md
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mscalar ∼ g2A
16π2

µISS

Λ ∼ 101−3µISS

α−1
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dHg < 2.1× 10−28ecm

(f.f̃)ϕ = (f.f̃)(ϕ+ θ2F )
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Clearly R-symmetry broken by dynamical term
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Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:

                                                                                                                                                                       

ISS metastable SUSY breaking

Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) $= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac〉0:
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Dual and deflected Unification – p.8due to dynamically induced term

classical potential
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√

ΛmQ)
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p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

2

And the SUSY preserving minima?

• There are actually N SUSY preserving vacua differing by phase
e2πi/N as required by Witten index of the microscopic theory
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Metastable SUSY breaking: cosmology and phenomenology – p.14
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Some general cosmological observations
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General cosmological observations

Lifetime of the false vacuum?

Rule of thumb: action for tunnelling

S4 ∼ 2π2 ϕ
4
0

V+
= 2π2ϕ

4
0

µ4

Γ4/V4 ∼ e−S4 can be made arbitrarily small by increasing ϕ0.

Metastable SUSY breaking: cosmology and phenomenology – p.17Monday, 11 April 2011



General cosmological observations

Lifetime of the false vacuum?

Actually the bound on ϕ0/µ is very weak...

Γ4/V4 ∼ e−S4

Multiply by space-time volume of past light cone of Universe, i.e.
(1010yr)4 gives S4 ! 400 which gives

ϕ0

µ
! 3

(

FQ

n

)
3

4

Metastable SUSY breaking: cosmology and phenomenology – p.18
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General cosmological observations

Dynamical Evolution at finite T

(SAA, Jaeckel, Khoze hep-th/0610334)

Potential at finite temperature along direction ϕ is (Dolan, Jackiw)

VT (ϕ) = VT=0(ϕ) +
T 4

2π2

∑

i

±ni

∫

∞

0

dq q2 ln
(

1∓ exp(−
√

q2 +m2
i (ϕ)/T

2)

)

To first approximation only “light” (mi(ϕ)2 ! T 2) states contribute

VT − VT=0 = −
π2g∗T 4

90

g∗ = nBlight
+

7

8
nFlight

Metastable SUSY breaking: cosmology and phenomenology – p.19

Dynamical evolution at finite T ...
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General cosmological observations
Dynamical Evolution at finite T

If µ ! T ! ϕ0 have

nBlight
= nFlight

= 4nFQ ; ϕ = 0

nBlight
= nFlight

= 0 ; ϕ = ϕ0

For now take all MSSM and gauge states as “light”.

Metastable SUSY breaking: cosmology and phenomenology – p.20

Dynamical Evolution at finite T

Conclusion: for large enough T

V+(T ) < V0(T )

This is a result of dynamical restoration of SUSY - have to integrate out
flavours to reverse sign of β-function.

Metastable SUSY breaking: cosmology and phenomenology – p.21
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General cosmological observationsDynamical Evolution at finite T
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Metastable SUSY breaking: cosmology and phenomenology – p.22Monday, 11 April 2011



General cosmological observations

The various temperatures

• The vacua become degenerate at Tdegen ∼ hµ

• Bubble nucleation is never an important process in the transition
|vac0〉 → |vac+〉

• The bump disappears at very low temperatures, Tcrit ∼ µ,
because of the shallowness and the confinement in |vac0〉.

Metastable SUSY breaking: cosmology and phenomenology – p.23Monday, 11 April 2011



General cosmological observations
The classical behaviour

Does the phase transition complete?

• Time for ϕ to roll to origin much less than time to cool if ϕ0 ! MPl

• Damped to origin because of coupling qϕq̃ and couplings to
messengers and/or MSSM.

• Remains trapped at origin at later times (Fischler, Kaplunovsky,
Krishnan, Mannelli, Torres hep-th/0611018, Craig, Fox, Wacker, hep-th/0611006,
SAA, Jaeckel, Khoze hep-th/0611030).

Metastable SUSY breaking: cosmology and phenomenology – p.24
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Some general phenomenological 
observations
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Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:

                                                                                                                                                                       

General phenomenological observations

Metastability and Nelson-Seiberg

But gaugino mass terms Mλλαλα have non-zero R-charge (since

Wα = λα + . . ., and Lgauge =
∫

d2θWαW α)

Non-zero gaugino masses require both R-symmetry and

SUSY breaking but these are mutually exclusive!

Progress in SUSY breaking – p.5
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Nelson-Seiberg theorem: In a generic theory dynamical SUSY 
breaking requires an R-symmetry:

                                                                                                                                                                       

But gaugino mass terms                   break R-symmetry: conflict

                                                                                                                                                                       

Wcl =
1

µ
Mq.q̃ −mQM

Wcl =
1

µ
Mijqi.q̃j −mQMii +mεabεrsq

a
r q

b
s

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm
(f.f̃)Φ = (f.f̃)(M + θ2F )

2

The Ordinary GM paradigm cheats by writing 

                                                                                                                                                                       

General phenomenological observations

Metastability and Nelson-Seiberg

But gaugino mass terms Mλλαλα have non-zero R-charge (since

Wα = λα + . . ., and Lgauge =
∫

d2θWαW α)

Non-zero gaugino masses require both R-symmetry and

SUSY breaking but these are mutually exclusive!

Progress in SUSY breaking – p.5
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Initially ISS looked promising and lots of excitement ...

1) Long lived vacuum because automatically very shallow

2) R-symmetry breaking as well, but ...

                                                                                                                                                                       

... sadly gaugino masses still zero. So require extra R-symmetry breaking, 
but then still need to worry about stability of SUSY breaking minimum.

General phenomenological observations
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Two possible options for doing phenomenology:

1) Explicit R-breaking

    
    a global SUSY minimum develops                          away in field space 
     

                                                                                                                                                                       2) Spontaneous R-breaking 

General phenomenological observations
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Explicit Breaking example Murayama and Nomura 2007

How to get an R-breaking gaugino mass without destabilising vacuum?
ISS is based on electric/magnetic Seiberg duals - suppose the messenger 
sector breaks R-symmetry maximally in the electric theory:

    
                              " " "                                                                                                          

〈FΦ〉 〈Φ〉

M2
gaugino

m2
scalar

∼ Nf .
1

1 + Nq

Nf

(

Mf

εµISS

)2

Φ ∼ Mf/ε

ki = (5/3, 1, 1)

kiαi

m0, m1/2

ΛS < ΛG

Wcl = W ISS
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b
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Welec = mQQQ̃+
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f̃

= 2
3

∑

i=1

Ciki

(

αi

4π

F

M

)2
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2

ΛIR
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W = q
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uc =

Λ

MX
qϕuc

∆ = 4

O = T µν ! gµν
〈

T
{

exp
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ddxJ4dO(x)

)}〉
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boundary

J z∆−d = J4d
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General phenomenological observations
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Thanks to Nelson-Seiberg, a new lower vacuum appears but far away ...

The model generates gaugino and scalar masses as in ordinary GM - but you 
have to be reasonably careful to avoid vacuum decay 
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Can simply “deform” ISS for direct gauge mediation    (SAA, Durnford, Jaeckel, Khoze)

                                                                                                                                                                       

where                    are the 1st and 2 nd of 7 generations of “flavour”. 

Landau poles

• Consider a “baryon-deformed” ISS in order to mediate SUSY

breaking:

W = Mijqi.q̃j − Tr(µ2
ISSM) + mεabεrsq

a
r qb

s

where r, s = 1, 2 are the 1st and second generation numbers only.

• We will use q and q̃ to mediate to gauginos so let n = 2, FQ = 7

and gauge SU(5)f ⊃ GSM factor

• take (µ2
ISS)ij = diag{µ2

2I2, µ2
5I5}

Dual and deflected Unification – p.10

Gauge the remaining 5 flavours: " " "                                                                                        

Landau poles

• Consider a “baryon-deformed” ISS in order to mediate SUSY

breaking:

W = Mijqi.q̃j − Tr(µ2
ISSM) + mεabεrsq

a
r qb

s

where r, s = 1, 2 are the 1st and second generation numbers only.

• We will use q and q̃ to mediate to gauginos so let n = 2, FQ = 7

and gauge SU(5)f ⊃ GSM factor

• take (µ2
ISS)ij = diag{µ2

2I2, µ2
5I5}

Dual and deflected Unification – p.10

Spontaneous R-Breaking example: has to be direct

Because of deformation      develops a VEV, and R-symmetry is broken. 
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and                  are gauge indices of the magnetic SU(n=2) theory. 

MSSM SUSY
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The mediators are               and                 and the typical scalar mass is                                            

Landau poles

• Gaugino mass is now (naively)

qa
i=1..5

q̃i=1..5
a

mλ ≈
ḡ2

A

16π2
χ

µ2
5

µ2
2

Dual and deflected Unification – p.12

Landau poles

• Gaugino mass is now (naively)

qa
i=1..5

q̃i=1..5
a

mλ ≈
ḡ2

A

16π2
χ

µ2
5

µ2
2

Dual and deflected Unification – p.12

But ... this is a model of  “slightly split SUSY” - gaugino masses are zero at tree-
level. Typically suppressed by a factor of a few * 10 
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Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji +mεabεrsq
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Tr(τ〈FΦ〉)

Tr(τ〈Φ〉)

Figure 1: One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)
line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the
F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion
of the R-symmetry breaking VEV into the propagator of the fermionic messengers.

This can be seen to result from the minimization of the tree-level potential with respect to A
for a given B VEV:

∂V

∂A
= λBTr(F †

Φ) = 0 . (30)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-degenerate
couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (31)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking
mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations such
as Tr(F †

Φ) = 0 are no longer expected to hold (for example, with the unconstrained values in the

table we find Tr(F †
Φ) = −0.034µ2

X ): typically one finds Tr(F †
Φ) = µ2/(16π2), since the effective

F -term for mediation is one-loop suppressed. Thus when the τ are degenerate one can still get

mλ ∼ µ2

16π2Mf

g2

(16π2) ∼ 1 TeV if µ2/Mf ∼ 107 GeV.

3.2 Direct gauge mediation

Now, let us compute gaugino masses for the direct gauge mediation scenario from the meson-
deformed ISS sector. We first consider the effects of those direct messengers which obtain R-
symmetry breaking masses at tree-level and which couple directly to the largest F -terms. These
transform in the fundamental representation of the SM gauge groups, and this constitutes a
strictly one-loop and formally leading order effect. Then we will include additional, formally
higher-loop, contributions from the pseudo-Goldstone modes transforming in both adjoint and
(bi-)fundamental representations of the Standard Model gauge groups. It will turn out that the
latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,
baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji + Wmeson−def(Aa,Φ) + Wbaryon−def(Aa,φ, φ̃) (32)
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Komargodski-Shih theorem: If there is a non-zero gaugino mass at 
leading order then there will be some value of pseudo-Goldstone mode 
(i.e.      ) with tachyonic messengers. 
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Komargodski-Shih theorem: If there is a non-zero gaugino mass at 
leading order then there will be some value of pseudo-Goldstone mode 
(i.e.      ) with tachyonic messengers. 
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Non-zero gaugino masses at leading order require a lower lying vacuum 
at some point in moduli space, at tree-level (note that the basic ISS 
model does not have this). Because of these two theorems, metastability 
is doubly inevitable!!
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Simplest way to see this in action: bring in a lower lying vacuum from infinity by 
having explicit R-breaking messenger:

                                                                                                                                                                       

  (SAA, Jaeckel, Khoze)
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Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) $= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac〉0:
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Dual and deflected Unification – p.8
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At leading order gaugino masses from explicit f-messengers only, but scalars from 
both q and f-messengers.
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At leading order gaugino masses from explicit f-messengers only, but scalars from 
both q and f-messengers.

                                                                                                                                                                       

The distance away in field space of the lower vacuum is        

As this is brought in from infinity, the SUSY breaking goes from being infinitely 
split to standard ~ 1. Gaugino masses directly related to vacuum structure.
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Supersymmetry wants to preserve the SM gauge and matter 
structure as much as possible. Compositeness wants to break it 

up. But Seiberg duality can also help with the latter!

                                                                                                                                                                       

preon Sp(6)L Sp(6)H Sp(6)R SU(3)1 SU(3)2 SU(3)3

a1 1 1 1 1 1
p1 1 1 3 1 1
q1 1 1 1 3 1

a2 1 1 1 1 1
p2 1 1 1 3 1
q2 1 1 1 1 3

a3 1 1 1 1 1
p3 1 1 1 1 3
q3 1 1 3 1 1

(4.1)

Each of the Sp(6) factors gives rise to composite fields as discussed in §2: there
are the T2 = a2 and T3 = a3 fields, which are neutral under SU(3)3, as well as the
composite fields shown below:

composite SU(3)1 SU(3)2 SU(3)3

Φ(1) = p1q1 3 3 1
Φ(2) = p2q2 1 3 3
Φ(3) = p3q3 3 1 3

X = q3q3 3 1 1
X = p1p1 3 1 1
Y = q1q1 1 3 1
Y = p2p2 1 3 1
Z = q2q2 1 1 3
Z = p3p3 1 1 3

(4.2)

For simplicity we have only listed the family with no a constituents; there are in fact
three families. For example, the three families of Φ(1) fields are (p1q1), (p1a1q1), and
(p1a2

1q1). In this model, the fields with the most a constituents will be the lightest,
and so these composites correspond to the third, second, and first family respectively.

The SM gauge group is contained in SU(3)3 by identifying SU(3)c = SU(3)1,while
embedding SU(2)w ⊂ SU(3)2 and U(1)Y ⊂ SU(3)2 × SU(3)3. With this embedding,
the Φ fields decompose as

Φ(1) → Q ⊕ G
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e.g. an s-confined trinification model (Kaplan Lepeintre Schmaltz)
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What about                ?

Pomarol Quiros 
Antoniadis Dimpoulos Pomarol Quiros 

Delgado Pomarol Quiros 
Mirabelli Peskin

Kaplan Kribs Schmaltz
Csaki Erlich Grojean Kribs 

Chacko Luty Nelson Ponton 
Gherghetta Pomarol

Marti Pomarol
 Gherghetta Pomarol (2003) ...

McGarrie Russo

                                                                                                                                                                       

This would correspond to many messengers so generally associated with either 
extra-dimensions and/or strong coupling, e.g...   
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Perturbatively or in 4D? See 
Buican Meade Seiberg Shih

Green, Katz Komargodski
McGarrie 

e.g. Gaugino mediation - corresponds to SUSY breaking 
by twisted boundary conditions
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General phenomenological observations
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Conformal symmetry 
spontaneously broken by IR braneConformal symmetry 

explicitly broken by UV brane

Purely composite states go hereElementary states go here

5D bulk states are a mix of 
composite and elementary

They can be localized in either 
direction with bulk mass terms

Φ, VF
ϕ, q, q̃, vnη

WUV = mη ηΦ WIR = qϕq̃ −mϕΦϕ

Figure 2: The first configuration for Seiberg duality in the large N limit, corresponding
to a composite meson in the magnetic theory. The bulk meson is the source field for the
composite operator O = QQ̃ (i.e. its UV value corresponds to the quark masses).

clearly be determined by mQ.

The fact that mQ is associated with the dynamical degree of freedom Φ in the AdS
picture implies that we should base the rest of the structure on the dual-of-the-dual electric
theory. To see this, let us briefly return to 4D Seiberg duality and rename the meson in the
magnetic theory η ≡ QQ̃/Λ, so that the superpotential is Wmag = ηqq̃. (We shall henceforth
drop the h-couplings unless we are discussing them specifically, and shall assume them to
be of order unity. We shall also for the moment set the dynamical scales of the electric
and magnetic theories to be degenerate, Λ.) On performing the dual of this theory one
arrives at an alternative (dual-of-the-dual) electric theory with meson Φ ≡ −qq̃/Λ and
superpotential coupling

W ′
elec = ΦQQ̃− ΛΦη . (18)

The first term of Eq.(18) is of course precisely the required source term of Eq.(17). (The
minus sign comes from the matching of dynamical scales in the electric and magnetic
theories, of which more in a moment.) One of the checks of Seiberg duality is that this
theory flows to the same IR physics as the theory we first thought of. Indeed both Φ and
η have masses of order Λ. Upon integrating them out one finds η = QQ̃/Λ and the empty
superpotential and spectrum of the initial theory. However note that we may also choose
to keep all the degrees of freedom and dualise (yet again) to a second magnetic theory. Now
the mesons Φ, η are to be treated as elementary and a new composite meson ϕ ≡ QQ̃/Λ
is introduced: the superpotential is

W ′
mag = qϕq̃ + ΛΦϕ− ΛΦη . (19)

Integrating out Φ and ϕ− = 1√
2
(η−ϕ) leaves us with the magnetic spectrum and superpo-

tential (Wmag = qϕ+q̃ where ϕ+ = 1√
2
(η + ϕ)) as required. It also equates the two mesons

ϕ and η.

8
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Is there a 4D theory that exhibits this SUSY breaking dynamics?

• Take the ISS model with Murayama-Nomura mediation

• Add extra quarks with mass         until the electric phase enters the conformal window 

• The running looks like ...
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at this point. The anomalous dimensions themselves are

γq =
1

16π2

(

Fh2 − 2ḡ2
(

n2 − 1

n

))

= 1− 3n

F

γϕ =
1

16π2

(

nh2
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= −2 +
6n

F
, (10)

giving

n(h′
∗)

2

8π2
=

4ν

F

(ḡ′∗)
2 =

n(n + 2F)

4(n2 − 1)
(h′

∗)
2 . (11)

When F = 3(n − ν) and n " ν both fixed points in the magnetic description are at
weak coupling. And in the opposite limit where F = 3

2(n + ν), both fixed points are at
strong coupling with nh2

∗ ! 8π2. A numerically evolved example of such flow is shown in
Figure 1a: the solid and dashed lines are the flows in the electric and magnetic theories
described above. The magnetic theory is indeed seen to flow towards the unstable fixed
point first with h∗ = 0, g∗, before ending up at the stable fixed point h′

∗, g
′
∗. The fixed

point values of the couplings indeed obey the above relations.

!t

Λ 8Π
2

!t

Λ 8Π
2

!t

Λ 8Π
2

Figure 1: Types of SQCD RG flow. The solid and dashed lines are the electric and magnetic
theories and λ = g2N or ḡ2n respectively. The undeformed theories flow to their conformal
fixed points in (a). Upon adding mass-deformation the theories flow to new fixed points as
in (b) or to IR-free theories as in (c). The magnetic theory was started at small coupling
in order to show its evolution towards the unstable fixed point first h∗ = 0, g∗ before ending
up at the stable fixed point h′

∗, g
′
∗.

Now let us consider what happens when we add a deformation to the electric model –
i.e. a new term in the superpotential. If this new term breaks the remaining R-symmetry
the theory will flow, either to a new fixed point, or to an IR-free or asymptotically free
theory. The simplest example of such a deformation is a quark mass term in the electric
theory:

Welec = (mQ)
j
iQ

i.Q̃j (12)
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in the limit of small ϑ. The scalar masses, being given by two loop diagrams, are similar
in magnitude and, as in the 4D theory above, the phenomenology is similar to that of
ordinary gauge mediation.

However new 5D effects will occur if we choose mf ! ΛIR. The scale mf then defines
a resolution scale much smaller than the typical length scale corresponding to the Kaluza-
Klein separation. The loop integrals that contribute to supersymmetry breaking are then
effected by the localization of supersymmetry breaking on the IR brane. The nett result
is a suppression of the scalar masses with respect to the gaugino masses which are still
given by Eq.(85). Naively one expects the suppression factor to be given by at least an
extra loop factor for the scalars while the gauginos are from the AdS viewpoint a tree-
level effect. This is nothing other than an AdS form of gaugino mediation very similar
to that in Ref. [48]. It is remarkable that when couched in the language of AdS/QCD,
the simple model of Ref. [26] becomes a straightforward implementation of general gauge
mediation [40]! (Note that the scalar mass-squareds in Ref. [48] indeed conform to the
general sum-rules derived in Ref. [40].)
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Figure 8: The configuration for “simplified” gauge mediation (c.f. Ref [26]). Into the
proposed gravitational dual of SQCD we add messenger fields f, f̃ on the UV brane that
interact with the bulk meson. The latter provides the heavy (KK) modes that generate the
effective messenger/spurion coupling in the low energy theory.

After this long heuristic discussion let us now present some precise details. In order to
make contact with the general gauge mediation side of the literature, we will be using the
formalism of Ref. [40]. First the effect of the warping on the supersymmetry breaking: the
solution to the bulk equation of motion for the massless modes of Φ are given by [25]
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the gluino mass M3 and three sfermion mass-squared parameters Πi=1...3 as follows:
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6 Conclusions

We have examined Randall-Sundrum (RS1) like configurations in strongly coupled 4D
N = 1 supersymmetric field theory. By taking a large N (Veneziano) limit and combining
it with a Seiberg duality, we showed how one can construct a model in which a conformal
phase with relevant operators (specifically quark mass terms) flows to a weakly coupled
free-magnetic phase. The bulk of these theories is approximated by the construction of
Klebanov and Maldacena [31]. The magnetic theory, including its gauge fields, lives entirely
on the IR brane as emergent degrees of freedom.

We showed how this construction can be used to derive an RS1 version of the MSSM
in which the SU(2)L gauge group is emergent. The SU(3)c and hypercharge gauge bosons
are bulk degrees of freedom and correspond to part of the “flavour” symmetries of the
Seiberg duality. The right-handed fields are predicted to be entirely elementary, whereas
the left-handed fields are predicted to be a mixture of elementary and composite degrees
of freedom. (The latter are identified as the mesons of the Seiberg duality.)

We also showed how gaugino mediation can be implemented, by beginning with the
Murayama-Nomura model of gauge mediation in Ref. [35] and taking its large N limit in the
specified manner. The metastable supersymmetry breaking of Ref. [3], being an emergent
phenomenon, appears on the IR brane, while the matter fields and messenger fields (being
elementary degrees of freedom in the model) are on the UV brane. The Standard Model
gauge fields are bulk degrees of freedom and therefore gauginos get masses at leading order,
whereas the sfermion mass-squareds, which have to be transmitted through the bulk, are
suppressed. The result is an AdS version of extra-dimensional gauge mediation. By varying
parameters, the pattern of supersymmetry breaking can be taken from extra-ordinary gauge
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Figure 10: The parameter γ = 8π2Π/M2
λ, varying continuously from extraordinary gauge

mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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The i from the Wick rotation of p0 → ip0 in d4p has been placed on the LHS of (104). In
the limit ξ → ∞ one obtains (using log(zIR/zUV) = 34.54)

iΠ = −z−2
IR

8π2
log(zIR/zUV)

∫ ∞
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dx
1

Γ0Γ1
≈ (0.036)2z−2

IR . (105)

This corresponds to the real part of iΠ and reproduces the twisted boundary condition
result in Ref. [23]. Therefore the scalar mass-squared for finite ξ can be obtained by
considering the real part of iΠ. Using (104) we find
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∫ ∞
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In the limit ξ → 0 we find that %[iΠ] ∝ ξ2 as one would expect in normal gauge mediation.
The ratio of the scalar masses to the gaugino masses can be parameterised by γ such that

Π =
γ

8π2
M2

λ . (107)

(Numerically the twisted boundary condition result is equivalent to γ = 1.73.) In the
ξ → 0 limit we have

γ ' −(log(zIR/zUV))
3

∫ ∞

0

dx
Γ1

Γ3
0

. (108)

A part of this ratio comes from the RG running contribution of the Majorana gaugino
masses to the scalar mass-squareds. Therefore, as one would expect, the integral (108)
is logarithmically divergent when Mλ = 0. In order to find the remaining piece we can
compare γ with the complete field theory expression for the contribution to the mass-
squareds from each gauge factor (neglecting the running of the gauge couplings) [64]:

Πa(µ) ≈ Πa(Q) + log

(

Q

µ

)

M2
λa

8π2
. (109)

The logarithmic piece in the integral for γ exactly reproduces this RG running. Subtracting
this piece, we find that in the large log (zIR/zUV) limit the remaining finite contribution to
Π(Q) is given by

lim
zIR/zUV → ∞

[γ̄] =
1

2
log(zIR/zUV) . (110)

Numerically, this approximation is accurate to a few percent for log (zIR/zUV) = 34.54 say.
At first sight the apparent increase of γ̄ with log (zIR/zUV) is a bit puzzling since heuristically
one expects the supersymmetry mediation to scalars to tend to a constant, but actually
this relation just reflects the “messenger content” in the bulk. Indeed this limit together
with the AdS/CFT relation g25k = 8π2/bCFT (c.f. Eq.(38)) gives

m2
i =
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M2
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. (111)
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mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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the gluino mass M3 and three sfermion mass-squared parameters Πi=1...3 as follows:
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6 Conclusions

We have examined Randall-Sundrum (RS1) like configurations in strongly coupled 4D
N = 1 supersymmetric field theory. By taking a large N (Veneziano) limit and combining
it with a Seiberg duality, we showed how one can construct a model in which a conformal
phase with relevant operators (specifically quark mass terms) flows to a weakly coupled
free-magnetic phase. The bulk of these theories is approximated by the construction of
Klebanov and Maldacena [31]. The magnetic theory, including its gauge fields, lives entirely
on the IR brane as emergent degrees of freedom.

We showed how this construction can be used to derive an RS1 version of the MSSM
in which the SU(2)L gauge group is emergent. The SU(3)c and hypercharge gauge bosons
are bulk degrees of freedom and correspond to part of the “flavour” symmetries of the
Seiberg duality. The right-handed fields are predicted to be entirely elementary, whereas
the left-handed fields are predicted to be a mixture of elementary and composite degrees
of freedom. (The latter are identified as the mesons of the Seiberg duality.)

We also showed how gaugino mediation can be implemented, by beginning with the
Murayama-Nomura model of gauge mediation in Ref. [35] and taking its large N limit in the
specified manner. The metastable supersymmetry breaking of Ref. [3], being an emergent
phenomenon, appears on the IR brane, while the matter fields and messenger fields (being
elementary degrees of freedom in the model) are on the UV brane. The Standard Model
gauge fields are bulk degrees of freedom and therefore gauginos get masses at leading order,
whereas the sfermion mass-squareds, which have to be transmitted through the bulk, are
suppressed. The result is an AdS version of extra-dimensional gauge mediation. By varying
parameters, the pattern of supersymmetry breaking can be taken from extra-ordinary gauge
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mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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The i from the Wick rotation of p0 → ip0 in d4p has been placed on the LHS of (104). In
the limit ξ → ∞ one obtains (using log(zIR/zUV) = 34.54)

iΠ = −z−2
IR

8π2
log(zIR/zUV)

∫ ∞

0

dx
1

Γ0Γ1
≈ (0.036)2z−2

IR . (105)

This corresponds to the real part of iΠ and reproduces the twisted boundary condition
result in Ref. [23]. Therefore the scalar mass-squared for finite ξ can be obtained by
considering the real part of iΠ. Using (104) we find

%[iΠ] = −z−2
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log (zIR/zUV)

∫ ∞
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In the limit ξ → 0 we find that %[iΠ] ∝ ξ2 as one would expect in normal gauge mediation.
The ratio of the scalar masses to the gaugino masses can be parameterised by γ such that

Π =
γ

8π2
M2

λ . (107)

(Numerically the twisted boundary condition result is equivalent to γ = 1.73.) In the
ξ → 0 limit we have

γ ' −(log(zIR/zUV))
3

∫ ∞
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dx
Γ1

Γ3
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. (108)

A part of this ratio comes from the RG running contribution of the Majorana gaugino
masses to the scalar mass-squareds. Therefore, as one would expect, the integral (108)
is logarithmically divergent when Mλ = 0. In order to find the remaining piece we can
compare γ with the complete field theory expression for the contribution to the mass-
squareds from each gauge factor (neglecting the running of the gauge couplings) [64]:

Πa(µ) ≈ Πa(Q) + log
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)

M2
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8π2
. (109)

The logarithmic piece in the integral for γ exactly reproduces this RG running. Subtracting
this piece, we find that in the large log (zIR/zUV) limit the remaining finite contribution to
Π(Q) is given by

lim
zIR/zUV → ∞

[γ̄] =
1

2
log(zIR/zUV) . (110)

Numerically, this approximation is accurate to a few percent for log (zIR/zUV) = 34.54 say.
At first sight the apparent increase of γ̄ with log (zIR/zUV) is a bit puzzling since heuristically
one expects the supersymmetry mediation to scalars to tend to a constant, but actually
this relation just reflects the “messenger content” in the bulk. Indeed this limit together
with the AdS/CFT relation g25k = 8π2/bCFT (c.f. Eq.(38)) gives
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λ, varying continuously from extraordinary gauge

mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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the gluino mass M3 and three sfermion mass-squared parameters Πi=1...3 as follows:
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6 Conclusions

We have examined Randall-Sundrum (RS1) like configurations in strongly coupled 4D
N = 1 supersymmetric field theory. By taking a large N (Veneziano) limit and combining
it with a Seiberg duality, we showed how one can construct a model in which a conformal
phase with relevant operators (specifically quark mass terms) flows to a weakly coupled
free-magnetic phase. The bulk of these theories is approximated by the construction of
Klebanov and Maldacena [31]. The magnetic theory, including its gauge fields, lives entirely
on the IR brane as emergent degrees of freedom.

We showed how this construction can be used to derive an RS1 version of the MSSM
in which the SU(2)L gauge group is emergent. The SU(3)c and hypercharge gauge bosons
are bulk degrees of freedom and correspond to part of the “flavour” symmetries of the
Seiberg duality. The right-handed fields are predicted to be entirely elementary, whereas
the left-handed fields are predicted to be a mixture of elementary and composite degrees
of freedom. (The latter are identified as the mesons of the Seiberg duality.)

We also showed how gaugino mediation can be implemented, by beginning with the
Murayama-Nomura model of gauge mediation in Ref. [35] and taking its large N limit in the
specified manner. The metastable supersymmetry breaking of Ref. [3], being an emergent
phenomenon, appears on the IR brane, while the matter fields and messenger fields (being
elementary degrees of freedom in the model) are on the UV brane. The Standard Model
gauge fields are bulk degrees of freedom and therefore gauginos get masses at leading order,
whereas the sfermion mass-squareds, which have to be transmitted through the bulk, are
suppressed. The result is an AdS version of extra-dimensional gauge mediation. By varying
parameters, the pattern of supersymmetry breaking can be taken from extra-ordinary gauge
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mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of

40

The i from the Wick rotation of p0 → ip0 in d4p has been placed on the LHS of (104). In
the limit ξ → ∞ one obtains (using log(zIR/zUV) = 34.54)

iΠ = −z−2
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8π2
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1
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≈ (0.036)2z−2
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This corresponds to the real part of iΠ and reproduces the twisted boundary condition
result in Ref. [23]. Therefore the scalar mass-squared for finite ξ can be obtained by
considering the real part of iΠ. Using (104) we find
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∫ ∞

0

dx
Γ1

Γ0

ξ2

(Γ2
0 + ξ2Γ2

1)
. (106)

In the limit ξ → 0 we find that %[iΠ] ∝ ξ2 as one would expect in normal gauge mediation.
The ratio of the scalar masses to the gaugino masses can be parameterised by γ such that

Π =
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(Numerically the twisted boundary condition result is equivalent to γ = 1.73.) In the
ξ → 0 limit we have

γ ' −(log(zIR/zUV))
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A part of this ratio comes from the RG running contribution of the Majorana gaugino
masses to the scalar mass-squareds. Therefore, as one would expect, the integral (108)
is logarithmically divergent when Mλ = 0. In order to find the remaining piece we can
compare γ with the complete field theory expression for the contribution to the mass-
squareds from each gauge factor (neglecting the running of the gauge couplings) [64]:
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The logarithmic piece in the integral for γ exactly reproduces this RG running. Subtracting
this piece, we find that in the large log (zIR/zUV) limit the remaining finite contribution to
Π(Q) is given by

lim
zIR/zUV → ∞

[γ̄] =
1

2
log(zIR/zUV) . (110)

Numerically, this approximation is accurate to a few percent for log (zIR/zUV) = 34.54 say.
At first sight the apparent increase of γ̄ with log (zIR/zUV) is a bit puzzling since heuristically
one expects the supersymmetry mediation to scalars to tend to a constant, but actually
this relation just reflects the “messenger content” in the bulk. Indeed this limit together
with the AdS/CFT relation g25k = 8π2/bCFT (c.f. Eq.(38)) gives
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λ, varying continuously from extraordinary gauge

mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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Ũ
+m2

D̃
−m2

L̃
+m2

Ẽ
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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6 Conclusions

We have examined Randall-Sundrum (RS1) like configurations in strongly coupled 4D
N = 1 supersymmetric field theory. By taking a large N (Veneziano) limit and combining
it with a Seiberg duality, we showed how one can construct a model in which a conformal
phase with relevant operators (specifically quark mass terms) flows to a weakly coupled
free-magnetic phase. The bulk of these theories is approximated by the construction of
Klebanov and Maldacena [31]. The magnetic theory, including its gauge fields, lives entirely
on the IR brane as emergent degrees of freedom.

We showed how this construction can be used to derive an RS1 version of the MSSM
in which the SU(2)L gauge group is emergent. The SU(3)c and hypercharge gauge bosons
are bulk degrees of freedom and correspond to part of the “flavour” symmetries of the
Seiberg duality. The right-handed fields are predicted to be entirely elementary, whereas
the left-handed fields are predicted to be a mixture of elementary and composite degrees
of freedom. (The latter are identified as the mesons of the Seiberg duality.)

We also showed how gaugino mediation can be implemented, by beginning with the
Murayama-Nomura model of gauge mediation in Ref. [35] and taking its large N limit in the
specified manner. The metastable supersymmetry breaking of Ref. [3], being an emergent
phenomenon, appears on the IR brane, while the matter fields and messenger fields (being
elementary degrees of freedom in the model) are on the UV brane. The Standard Model
gauge fields are bulk degrees of freedom and therefore gauginos get masses at leading order,
whereas the sfermion mass-squareds, which have to be transmitted through the bulk, are
suppressed. The result is an AdS version of extra-dimensional gauge mediation. By varying
parameters, the pattern of supersymmetry breaking can be taken from extra-ordinary gauge
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mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,
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The squark masses derived here and in Ref. [23] (which are realisations of general gauge
mediation in AdS) of course have to satisfy these rules. However there are only four free
parameters for the models discussed here, not six. Assuming that the gaugino masses are
driven by couplings to different F -terms or possibly different couplings to the same F -term,
then they can be free parameters, however the mediation to the sfermions is only a function
of the AdS geometry and the suppression is the same for all the Standard Model gauge
factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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The i from the Wick rotation of p0 → ip0 in d4p has been placed on the LHS of (104). In
the limit ξ → ∞ one obtains (using log(zIR/zUV) = 34.54)

iΠ = −z−2
IR

8π2
log(zIR/zUV)

∫ ∞

0

dx
1

Γ0Γ1
≈ (0.036)2z−2

IR . (105)

This corresponds to the real part of iΠ and reproduces the twisted boundary condition
result in Ref. [23]. Therefore the scalar mass-squared for finite ξ can be obtained by
considering the real part of iΠ. Using (104) we find

%[iΠ] = −z−2
IR

8π2
log (zIR/zUV)

∫ ∞

0

dx
Γ1

Γ0

ξ2

(Γ2
0 + ξ2Γ2

1)
. (106)

In the limit ξ → 0 we find that %[iΠ] ∝ ξ2 as one would expect in normal gauge mediation.
The ratio of the scalar masses to the gaugino masses can be parameterised by γ such that

Π =
γ

8π2
M2

λ . (107)

(Numerically the twisted boundary condition result is equivalent to γ = 1.73.) In the
ξ → 0 limit we have

γ ' −(log(zIR/zUV))
3

∫ ∞

0

dx
Γ1

Γ3
0

. (108)

A part of this ratio comes from the RG running contribution of the Majorana gaugino
masses to the scalar mass-squareds. Therefore, as one would expect, the integral (108)
is logarithmically divergent when Mλ = 0. In order to find the remaining piece we can
compare γ with the complete field theory expression for the contribution to the mass-
squareds from each gauge factor (neglecting the running of the gauge couplings) [64]:

Πa(µ) ≈ Πa(Q) + log

(

Q

µ

)

M2
λa

8π2
. (109)

The logarithmic piece in the integral for γ exactly reproduces this RG running. Subtracting
this piece, we find that in the large log (zIR/zUV) limit the remaining finite contribution to
Π(Q) is given by

lim
zIR/zUV → ∞

[γ̄] =
1

2
log(zIR/zUV) . (110)

Numerically, this approximation is accurate to a few percent for log (zIR/zUV) = 34.54 say.
At first sight the apparent increase of γ̄ with log (zIR/zUV) is a bit puzzling since heuristically
one expects the supersymmetry mediation to scalars to tend to a constant, but actually
this relation just reflects the “messenger content” in the bulk. Indeed this limit together
with the AdS/CFT relation g25k = 8π2/bCFT (c.f. Eq.(38)) gives

m2
i =

∑

a

2Ca

bCFT

M2
λa

. (111)
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Figure 10: The parameter γ = 8π2Π/M2
λ, varying continuously from extraordinary gauge

mediation to gaugino mediation behaviour as the relative supersymmetry breaking on the
IR brane, ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger
scale”, is the contribution with the gaugino RG term removed, relevant in the small ξ limit.

As one final remark, it is worth highlighting the restricted form of general gauge me-
diation that one derives from this model. It is by now well known that the most general
configuration for gauge mediation allows six independent parameters (assuming no CP vi-
olating phases in the gaugino sector), three for the gaugino mass terms, and three for the
squarks [57]. There are five squark masses in total so this requires two sum rules,

m2
Q̃
− 2m2

Ũ
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+m2

Ẽ
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Ũ
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“Pure” means no additional generation of Higgs “B term”.
This must be generated radiatively -> large tan beta (Rattazzi, Sarid; Gabrielli Sarid)
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Take Pure GGM parameter space and restrict to single effective scale for the 
gaugino masses and for the scalar masses

• includes any scenario with preserved GUT structure in mediation
• captures the main effects of R-symmetry and metastability
• is equivalent to                       in CMSSM 

• in contrast with other pheno work (e.g. Carpenter;  Rajaraman, Shirman, Smidt, Yu)                          

General set-up for phenomenological study

strongly coupled theories with direct mediation.

The main free parameters in this setup are the gaugino and scalar masses as well as the
messenger scale. For simplicity we restrict ourselves in this work to a single effective scale ΛG

for the gaugino masses and a single scale ΛS for the scalars1. Thus at the messenger scale Mmess

the soft supersymmetry breaking gaugino masses are

Mλ̃i
(Mmess) = ki

αi(Mmess)

4π
ΛG (1)

where ki = (5/3, 1, 1), kiαi (no sum) are equal at the GUT scale and αi are the gauge coupling
constants. The scalar mass squareds are

m2
f̃
(Mmess) = 2

3
∑

i=1

Ciki
α2

i (Mmess)

(4π)2
Λ2

S (2)

where the Ci are the quadratic Casimir operators of the gauge groups. Ordinary gauge mediation
scenarios (see Ref. [4] for a review) live on the restricted parameter space ΛG ! ΛS.

Outside the confines of ordinary gauge mediation the parameter space is populated by many
models that predict different values of the ratio of gaugino to scalar masses, ΛG/ΛS . In models
with explicit messengers one expects this ratio to be close to one, while for direct mediation
models the gaugino masses are often suppressed relative to the scalar masses [5, 6, 7, 8, 9, 10].
Recently, hybrid models have been constructed which interpolate between these two cases [11]. It
is also possible to achieve values ΛG/ΛS > 1 by increasing the “effective number of messengers”
in the context of extraordinary gauge mediation models [12]. Indeed we argue that the set
of models defined by ΛG, ΛS and Mmess are the gauge mediation equivalent to the canonical
mSUGRA (or Constrained MSSM) scenario, with ΛG and ΛS playing the role of the parameters
m1/2 and m0 in those models.

With such a plethora of possibilities suddenly available, it is therefore important to determine
if any region in this parameter space is favoured by experimental data. Accordingly, in this
paper we will confront the full ΛG, ΛS and Mmess parameter space with a number of measured
observables in order to provide direction for model building and investigate expected LHC
signals.

Before we proceed to the phenomenology we outline our approach to the supersymmetry
breaking in the Higgs sector. Pure General Gauge Mediation on its own does not generate the
µ-parameter appearing in the effective Lagrangian,

Leff ⊃
∫

d2θ µHuHd , (3)

where the Higgs superfields are denoted by H and their scalar components are H. The phe-
nomenologically required value of µ is roughly of the order of the electroweak scale and as usual
will be determined in our analysis from the requirements of electroweak symmetry breaking.

1We do not split the scale for the different gauge representations as was done in [2, 3].
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e.g. take intermediate messenger scale:                                 

B and tan beta at low energy
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Exclusions
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Figure 1: Pure GGM parameter space for intermediate messenger scales, Mmess =
1010 GeV. The dominant constraints excluding various areas around the allowed (white)
region are indicated as follows: points in the black region violate the pre-LHC direct
search limits, while yellow area is excluded by the presence of tachyons in the spectrum.
In the blue region SoftSUSY has not converged and in the green region a coupling reaches
a Landau pole during RG evolution. Ordinary gauge mediation lives on the dotted line.

dotted lines, and the 500 GeV and 1 TeV gluino contours are indicated as solid lines4.
Furthermore, the diagonal dotted red line corresponds to the boundary between neutralino
and slepton NLSP. The figures also contain the benchmark points introduced in [11].

We now implement the new experimental constraints on SUSY searches obtained from
the ATLAS data on final states with jets, missing energy and no leptons. The details
of our analysis of this data are explained in section 3. Our results are obtained from
a Monte Carlo simulation of the signal events using Herwig++ [37, 38] and RIVET [39],
implementing all the experimental cuts imposed by ATLAS [3]. Combining the four signal
regions defined by ATLAS [3] we obtain the constraints shown as the red lines in the right
panels of Fig. 2. One can clearly see that already the relatively small data sample of
35 pb−1 provides interesting new bounds on models of pure general gauge mediation.

As one would expect the excluded regions correspond to relatively low gluino and
squark masses. This will become clearer in Fig. 6 which shows the GGM exclusion region

4In the Mmess = 108 GeV scenario the single dotted contour is for 1 TeV stop masses.
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Dominated by scalar masses which decrease when either       or         decrease.
So starting at the line of standard gauge mediation and going to the split scenario by 
decreasing         does not increase tuning     
                                 

Fine tuning

ca
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Figure 6: Plots showing level of fine-tuning required to successfully break electroweak symmetry,
ca (roughly speaking we have to tune to 1 part in ca) for (a) MMess = 106 GeV, (b) MMess =
1010 GeV and (c) Mmess = 1014 GeV. Also shown are the contours of ca = 100 and 1000.

20

supersymmetry is realised. Furthermore there is some inherent subjectivity in how one chooses
to define an appropriate measure of fine-tuning, and what constitutes an acceptably high level
of fine-tuning in a theory. Should we accept fine-tuning at the 10% level, but not 1%? For
these reasons we think that while an analysis of the necessary fine-tuning required to achieve
electroweak symmetry breaking in General Gauge Mediation is worthwhile, arguments based on
fine-tuning should not be used to rule out any theory under consideration.

With this caveat in place let us proceed. A number of definitions of a suitable quantification
of fine-tuning have been proposed [58, 59]. In this work we adopt the definition of [59], which
is incorporated in the SoftSUSY code. Consider a set of model parameters {a}. For us a =
{ΛG,ΛS , µ}. Since Bµ is set to be zero at the high scale Mmess we do not, of course, consider it
to be part of our fine-tuning measure. Then the sensitivity of M2

Z to the parameter ai is

cai
≡

∣

∣

∣

∣

∂ ln M2
Z

∂ ln a

∣

∣

∣

∣

(20)

The total fine-tuning in the soft-parameters is defined to be ca = max(cai
). While this makes

clear the sensitivity of M2
Z to the soft breaking parameters, it is also possible that there could

exist a region of parameter space that evades the naturalness bounds in the soft-parameters
but is very finely tuned with respect to some other parameter. The canonical example of this
is the focus-point region in the Constrained MSSM [60], which despite being a region of low
fine-tuning from the perspective of the universal scalar mass m0, is nonetheless very sensitive
to the top Yukawa ht. The top Yukawa coupling is different in some ways to the soft masses we
have included in our definition of ca: it is dimensionless and is related in an intimate way to the
measured mass of the top quark Mt [61]. For these reasons we do not include it in our definition
of ca. We have examined the results for cht and found them to be qualitatively similar.

We show in Figure 6 (a,b,c) the level fine-tuning required in our scans with Mmess = 106,
1010 and 1014 GeV as in the previous section 5. We also show contour lines corresponding
to fine-tuning at the ca = 100 and 1, 000 levels. The minimum fine-tuning possible is around
ca ∼ 30. However, the region in which this occurs is strongly disfavoured by the low energy
observables. In fact, the region preferred by the low energy observables is quite well delineated
by the contours of 100 and 1, 000 for Mmess = 1 × 1010,14. That this amount of fine-tuning is
necessary is somewhat troubling, but is comparable to the situation in the mSUGRA scenario.

It is interesting to note that the χ2 (Figure 5) and the fine-tuning (Figure 6) prefer different
regions of parameter space. Without the χ2 analysis the fine-tuning plots alone would favour
light supersymmetry. However, the comparison with measured observables, i.e. the χ2, favours
somewhat heavier superpartner masses.

Finally let us comment on the ΛG/ΛS ratio and its effect on the amount of fine-tuning.
Keeping ΛS fixed and moving horizontally to the left, i.e. decreasing ΛG we see that the fine-
tuning decreases. This is because the fine-tuning is dominated by the scalar mass squareds
which decrease when either ΛG or ΛS decrease. In particular, beginning on the line of ordinary
gauge mediation and decreasing ΛG (with low χ2) does not lead to a significant increase in either

5For earlier work on alleviating the fine-tuning problem in gauge mediation see [62]
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Experimental constraints

To compare with Normal Gauge mediation, look at general scalar and 
gaugino masses in gauge mediation and apply experimental bounds ...

Observable Constraint Experiment Theory

δaµ × 1010 29.5 ± 8.8 [26] [33, 42, 43, 44, 35, 34, 36]
mh[GeV] > 114.4 GeV [45] [46]

BR(B → Xsγ) × 104 3.28 ± 0.29 [47] [37, 38]
BR(Bs → µ+µ−) < 5.8 × 10−8 [48] [33, 42, 43, 44]
BR(B → Dτν) 0.416 ± 0.138 [49] [37, 38]
BR(Ds → τν) 5.7 ± 0.5 × 10−2 [50] [37, 38]
BR(Ds → µν) 5.7 ± 0.5 × 10−3 [50] [37, 38]

RBτν 1.9 ± 0.60 [39] [37, 38, 51]
∆0− 0.031+0.03

−0.025 [26, 52, 53] [37, 38]
Rl23 1.004 ± 0.007 [54] [37, 38]

Table 1: Experimental constraints, showing the observables, the constraints applied and the
source of the theoretical and experimental values and errors.

and BR(Bs → µ+µ−). Furthermore, the anomalous magnetic moment of the muon favours
some supersymmetric contribution to achieve agreement with experiment. Thus, we expect
some tension between (g − 2)µ and some of the B observables.

In order to investigate this we now turn to a χ2 analysis. The χ2 value of the ith observable
is

χ2
i =

(pi − ci)2

σ2
i

(16)

where pi is the predicted value and ci is the experimental central value. This is not the case
for the Higgs mass, for which we use a parametrisation of the LEP likelihood provided in the
SoftSUSY package, and the unobserved branching ratio BR(Bs → µ+µ−) where we use the
Tevatron likelihood2. The total χ2

tot =
∑

i χ
2
i is the sum of the χ2 values of the individual

observables. We note that a study in similar spirit to ours has been performed in the context of
ordinary gauge mediation in [40, 41].

Figure 5 (a,c,e) show the χ2
tot/d.o.f. distributions we obtain from the scans for Mmess =

1× 106,10,14 respectively, along with 68% and 95% confidence limit contours (∆χ2
tot = 2.41, 5.99

respectively). The region of maximum likelihood is shown in yellow, and the best-fit points are
marked by black splodges. We see immediately that the region of light supersymmetry where
both ΛG and ΛS are small is strongly disfavoured (the blue and red region). This due to a
combination of factors. Since the scalars are light the Higgs mass is below the LEP bound for
which there is a strong χ2 penalty. On top of that, the supersymmetric contributions to (g−2)µ
and the B-observables are too large. As the masses of the SUSY particles increase the loop
contributions become smaller and the Higgs mass larger. A large amount of the region of good
fit for the higher Mmess has very small ΛS for Mmess = 1010 GeV, and all of the 68% confidence
region for Mmess = 1× 1014 has an inverted hierarchy ΛG > ΛS . For all values of Mmess within
the 68% confidence limits shown the Higgs mass is just above the limit set at LEP, and the
anomalous magnetic moment of the muon is saturated by SUSY effects. However, the region

2We thank C. S. Lin for providing the likelihood for this process.
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Fit doesnʼt favour degenerate SUSY breaking for scalars and gauginos
                                 

Experimental constraints
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Figure 5: (a,c,e) show the χ2
tot distribution in the ΛG-ΛS plane for Mmess = 106 ,1010 and

1014 GeV respectively, and (b,d,f) show the χ2 of only the B physics observables for the same
values of Mmess. The black lines denote the boundaries of the 68% and 95% confidence regions.
The black spots mark the best-fit points in all cases.
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1014 GeV respectively, and (b,d,f) show the χ2 of only the B physics observables for the same
values of Mmess. The black lines denote the boundaries of the 68% and 95% confidence regions.
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The NLSP can eventually decay to the LSP (the gravitino)

•Neutralino: displaced vertex with decay to photon                    
                    or jet/lepton pairs 

 
•Stau: displaced vertex with ionization track and decay 
           predominantly to jets

•Co-NLSP: neutralino/stau mass difference less than tau-mass - mix of two 

NLSP
stop mass contours of 500GeV and 1TeV are indicated as dotted lines, and the 500GeV gluino
contour is indicated as a solid line. We have indicated 3 different NLSP regions on the figure,
each giving quite distinct experimental signatures:

• Neutralino NLSP (Marked in green): no ionization track and either missing energy or
displaced vertex with decay predominantly to photon (χ0

1 → G̃γ) or jet/lepton pairs (χ0
1 →

G̃Z → G̃+ jets/ll̄).

• Stau NLSP (Marked in blue): ionization track plus possible displaced vertex with decay
predominantly to jets (τ̃R → G̃τ → G̃ντ + jets/l′ l̄).

• Neutralino/stau co-NLSP (Marked in red): if the mass difference between the neutralino
and stau is less than mτ , then the NNLSP is unable to decay to the NLSP, and each
component behaves effectively a separate NLSP. One expects a mix of those previous two
cases.

We now consider the decay length of the NLSP as follows. First consider the decays: they
go through the interaction term which for on-shell particles is [8]

L =
1

F0

(

(m2
f −m2

f̃
)f̄Lf̃ +

Mλ̃i

4
√
2
¯̃λiσ

µνF i
µν

)

G̃+ h.c. (7)

where G̃ is the Goldstino and as we have already stated F0 is the absolute scale of supersymmetry
breaking. The decay length derived from Eq.(7) is given by

Ldecay =
1

κ

(

100GeV

mNLSP

)5 ( F0

(100 TeV )2

)2

0.1mm (8)

where the factor κ is a calculable number depending on the mixing in the NLSP, and is of order
unity (precisely unity for the stau in fact). The interesting case is when decay takes place inside
the detector which conservatively requires Ldecay < 10m. For NLSP masses less that 500GeV ,
this translates into

√

F0 ! 104 TeV . (9)

Thus F0 will be at the lower end of the possible range.

In order to get more precise information we need to consider the relation between F0 and
ΛG or ΛS . This is very model dependent, but simplifies if we take there to be only one source of
supersymmetry breaking (i.e. one potential Goldstino) and one dominant source of mediation
for gauginos or scalars. Under this assumption the relation between the Λ’s and F0 can be
expressed with two parameters kG and kS as

ΛG = kGF0/Mmess ; ΛS = kSF0/Mmess . (10)

In GGM, kG and kS are independent parameters which encode the difference between the gauge
and scalar mass scales ΛG and ΛS . In ordinary gauge mediation, kG = kS , and this corresponds
to a simple one-scale special case of GGM. In general, as will be reviewed shortly, the range of
values for kG and kS is highly model-dependent.
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The NLSP is either neutralino or stau or co-NLSP

NLSP
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Figure 4: The NLSP regions in the ΛG, ΛS parameter space for Mmess = 1010 GeV (left figure)
and Mmess = 1014 GeV (right figure). The NLSP is χ0

1 in the green region, χ0
1/τ̃ co-NLSP in

the red region and τ̃ in the blue region.
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the red region and τ̃ in the blue region.
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Decay inside detector?
(Bagger Matchev Pierce Zhang)

NLSP
In order to present model-independent information it is useful to express F0 with reference

to ΛG: i.e. we replace F0 = k−1
G ΛGMmess. The decay length Ldecay derived from Eq.(7) is given

by

k2GLdecay =
1

κ

(

100GeV

mNLSP

)5 (√
ΛGMmess

100TeV

)4

0.1mm (11)

We then plot contours of k2GL. The reason that this is the most useful parameterization is that
in the regions where ΛG > ΛS the NLSP is mainly slepton, as can be seen from Fig. 4, and
its mass is dominated by renormalization group contributions from the gauginos (except when
ΛG/ΛS ∼ O(1−10)). Thus mNLSP is mainly a function of ΛG (just as the stop mass is in fact).
On the other hand in the regions where ΛG < ΛS the NLSP is mainly a bino-like neutralino and
again its mass is expected to be dominated by ΛG. Hence the RHS of Eq. (11) is predominantly
a function of ΛG.

We show the results for the decay lengths log10(k
2
GLdecay) in Figure 5 for the three values

of the messenger mass. We see that the contours follow a vertical, horizontal and vertical again
pattern, which we now explain. Starting at the top of the figures, when ΛS is large the NLSP is
the neutralino, and the decay length does not change with decreasing ΛS as both mNLSP and ΛG

are constant. When the NLSP species changes from neutralino to the lightest stau, there is a kink
in the contour. This is partly due to the change in κ, and also to the change in the behaviour
of the NLSP mass with ΛG and ΛS . In this regime the stau mass is dominated by ΛS and,
although k2GLdecay is proportional to Λ2

G the factor of 1/m5
τ̃ means that k2GLdecay is proportional

to 1/Λ5
S . When these two parameters are of the same of order of magnitude the contour thus

appears flat in ΛS . Finally, when ΛG/ΛS ∼ 10 the stau mass begins to be dominated by ΛG

and generated mostly through RG running and so the contour is again approximated by a line
of constant ΛG.

It is instructive to now consider the values of kG that one expects to have in various different
top-down scenarios in order to see whether decays inside the detector are a possibility:

• Ordinary mediation: Here one has only one messenger and ΛG = ΛS and kG is the coupling
of the messenger to the SUSY breaking F -term. Typically one takes kG ∼ 1. In this case
Figure 5 gives directly the decay lengths of the NLSP. Evidently low messenger scales are
required for decay inside the detector. For Mmess = 106 GeV decay always happens inside
the detector. Intermediate scales Mmess = 1010 GeV would require high values of ΛG, ΛS

which leads to very high masses outside the early discovery region.

• Suppressed ordinary gauge mediation: Ref. [20] presented a simple scheme for gauge me-
diation in which a single messenger field was coupled to a metastable SUSY-breaking
sector of the type introduced in Ref. [21]. In these models the Goldstino superfield is a
composite particle (a “meson”) and hence the effective coupling to the messenger fields

is suppressed by a factor kG ∼ kS ∼ Λcomp

MX
$ 1 where MX is some fundamental scale

and Λcomp is the scale of compositeness. The general expectation is that kG, kS $ 1 and
indeed phenomenological viability demands it. For example the values chosen in Ref. [20]
give kG, kS ∼ 10−7. Hence decay inside the detector (or even inside the Solar system) is
clearly impossible for any values of Mmess or ΛG, ΛS .

11

where          is of order one (mixing in NLSP) and       is the effective number of 
messengers to the gaugino  (                                )  
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Figure 5: This figure shows the logarithm of the decay length in metres of the NLSP,
log10(k

2
GLdecay) for Mmess = 1 × 106 GeV (top), Mmess = 1 × 1010 GeV (middle) and

Mmess = 1× 1014 GeV (bottom), as well as contours for each case.
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In order to present model-independent information it is useful to express F0 with reference
to ΛG: i.e. we replace F0 = k−1

G ΛGMmess. The decay length Ldecay derived from Eq.(7) is given
by

k2GLdecay =
1

κ

(

100GeV

mNLSP

)5 (√
ΛGMmess

100TeV

)4

0.1mm (11)

We then plot contours of k2GL. The reason that this is the most useful parameterization is that
in the regions where ΛG > ΛS the NLSP is mainly slepton, as can be seen from Fig. 4, and
its mass is dominated by renormalization group contributions from the gauginos (except when
ΛG/ΛS ∼ O(1−10)). Thus mNLSP is mainly a function of ΛG (just as the stop mass is in fact).
On the other hand in the regions where ΛG < ΛS the NLSP is mainly a bino-like neutralino and
again its mass is expected to be dominated by ΛG. Hence the RHS of Eq. (11) is predominantly
a function of ΛG.

We show the results for the decay lengths log10(k
2
GLdecay) in Figure 5 for the three values

of the messenger mass. We see that the contours follow a vertical, horizontal and vertical again
pattern, which we now explain. Starting at the top of the figures, when ΛS is large the NLSP is
the neutralino, and the decay length does not change with decreasing ΛS as both mNLSP and ΛG

are constant. When the NLSP species changes from neutralino to the lightest stau, there is a kink
in the contour. This is partly due to the change in κ, and also to the change in the behaviour
of the NLSP mass with ΛG and ΛS . In this regime the stau mass is dominated by ΛS and,
although k2GLdecay is proportional to Λ2

G the factor of 1/m5
τ̃ means that k2GLdecay is proportional

to 1/Λ5
S . When these two parameters are of the same of order of magnitude the contour thus

appears flat in ΛS . Finally, when ΛG/ΛS ∼ 10 the stau mass begins to be dominated by ΛG

and generated mostly through RG running and so the contour is again approximated by a line
of constant ΛG.

It is instructive to now consider the values of kG that one expects to have in various different
top-down scenarios in order to see whether decays inside the detector are a possibility:

• Ordinary mediation: Here one has only one messenger and ΛG = ΛS and kG is the coupling
of the messenger to the SUSY breaking F -term. Typically one takes kG ∼ 1. In this case
Figure 5 gives directly the decay lengths of the NLSP. Evidently low messenger scales are
required for decay inside the detector. For Mmess = 106 GeV decay always happens inside
the detector. Intermediate scales Mmess = 1010 GeV would require high values of ΛG, ΛS

which leads to very high masses outside the early discovery region.

• Suppressed ordinary gauge mediation: Ref. [20] presented a simple scheme for gauge me-
diation in which a single messenger field was coupled to a metastable SUSY-breaking
sector of the type introduced in Ref. [21]. In these models the Goldstino superfield is a
composite particle (a “meson”) and hence the effective coupling to the messenger fields

is suppressed by a factor kG ∼ kS ∼ Λcomp

MX
$ 1 where MX is some fundamental scale

and Λcomp is the scale of compositeness. The general expectation is that kG, kS $ 1 and
indeed phenomenological viability demands it. For example the values chosen in Ref. [20]
give kG, kS ∼ 10−7. Hence decay inside the detector (or even inside the Solar system) is
clearly impossible for any values of Mmess or ΛG, ΛS .
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stop mass contours of 500GeV and 1TeV are indicated as dotted lines, and the 500GeV gluino
contour is indicated as a solid line. We have indicated 3 different NLSP regions on the figure,
each giving quite distinct experimental signatures:

• Neutralino NLSP (Marked in green): no ionization track and either missing energy or
displaced vertex with decay predominantly to photon (χ0

1 → G̃γ) or jet/lepton pairs (χ0
1 →

G̃Z → G̃+ jets/ll̄).

• Stau NLSP (Marked in blue): ionization track plus possible displaced vertex with decay
predominantly to jets (τ̃R → G̃τ → G̃ντ + jets/l′ l̄).

• Neutralino/stau co-NLSP (Marked in red): if the mass difference between the neutralino
and stau is less than mτ , then the NNLSP is unable to decay to the NLSP, and each
component behaves effectively a separate NLSP. One expects a mix of those previous two
cases.

We now consider the decay length of the NLSP as follows. First consider the decays: they
go through the interaction term which for on-shell particles is [8]

L =
1

F0

(

(m2
f −m2

f̃
)f̄Lf̃ +

Mλ̃i

4
√
2
¯̃λiσ

µνF i
µν

)

G̃+ h.c. (7)

where G̃ is the Goldstino and as we have already stated F0 is the absolute scale of supersymmetry
breaking. The decay length derived from Eq.(7) is given by

Ldecay =
1

κ

(

100GeV

mNLSP

)5 ( F0

(100 TeV )2

)2

0.1mm (8)

where the factor κ is a calculable number depending on the mixing in the NLSP, and is of order
unity (precisely unity for the stau in fact). The interesting case is when decay takes place inside
the detector which conservatively requires Ldecay < 10m. For NLSP masses less that 500GeV ,
this translates into

√

F0 ! 104 TeV . (9)

Thus F0 will be at the lower end of the possible range.

In order to get more precise information we need to consider the relation between F0 and
ΛG or ΛS . This is very model dependent, but simplifies if we take there to be only one source of
supersymmetry breaking (i.e. one potential Goldstino) and one dominant source of mediation
for gauginos or scalars. Under this assumption the relation between the Λ’s and F0 can be
expressed with two parameters kG and kS as

ΛG = kGF0/Mmess ; ΛS = kSF0/Mmess . (10)

In GGM, kG and kS are independent parameters which encode the difference between the gauge
and scalar mass scales ΛG and ΛS . In ordinary gauge mediation, kG = kS , and this corresponds
to a simple one-scale special case of GGM. In general, as will be reviewed shortly, the range of
values for kG and kS is highly model-dependent.
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Figure 6: This figure shows the logarithm of the decay length in meters of the NLSP,
log10 k2GLdecay for Mmess 1 108 GeV (top), Mmess 1 1010 GeV (middle) and
Mmess 1 1014 GeV (bottom), as well as contours for each case.
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Two light gluino points (direct mediation), a stau NLSP point (many messengers/
strong coupling) a co-NLSP point (close to ordinary GM) and a NLSP decay point

Benchmark points
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Benchmark Point σpp→g̃g̃ σpp→q̃q̃ σpp→g̃q̃ σpp→q̃ ¯̃q σpp→τ̃iτ̃j σpp→τ̃iν̃τ

Stau 17 190 164 54 91 30
Co-NLSP 16 133 128 34 17 12

Table 3: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.

not performed a detailed simulation, this point should just be within the range of discovery of
the ATLAS detector in the first year of operation [22]. Single production of neutralinos and
charginos in conjuction with a gluino or a squark is negligible.

Finally, we discuss the possibility of a stau-neutralino co-NLSP. If we were to decrease
ΛG very much, this would lead to an unacceptable decrease in the Higgs mass. Therefore we
must increase ΛS in order to achieve mτ̃ ∼ mχ0

1
. The co-NLSP point has ΛG = 1.2 × 105,

ΛS = 4.76 × 104 and tan β = 20.5. The point we have selected has mτ̃1 = 157GeV and mχ0
1
=

157GeV , with neutralino marginally heavier than the stau. As the scalar mass parameter ΛS

has increased somewhat, the squark masses are heavier at this point by around 50GeV compared
with the stau NLSP point. The slepton masses are also higher, and the light smuon and selectron
masses are 181GeV .

@Joerg: Decay channel piecharts?

4 Conclusions

We have made a survey of the phenomenology of Pure General Gauge Mediation – i.e. in which
the Bµ parameter is generated radiatively. We placed a particular emphasis on its testability
in early LHC searches (at 7 TeV). Four benchmark points were presented: two corresponding
to light gluino regions (mg̃ ! 500 GeV with a bino-like neutralino NLSP), one to a stau NLSP
and one to stau/neutralino co-NLSP. These benchmark points are representative of the different
phenomenology that can occur in the regions that are favoured by current experimental fits. We
present a preliminary analysis of the spectrum, production cross sections and branching ratios.
The full set of data in SLHA format for these benchmark points can be found at

http://www.ippp.dur.ac.uk/∼SUSY

We also surveyed and discussed NLSP phenomenology in this set-up, focussing on the possibility
of NLSP decays inside the detector in various different schemes of SUSY breaking. Pure GGM
with medium to low messenger masses (106−10 GeV) can give detectable decays with displaced
vertices inside the detector, and hence direct knowledge of the fundamental scale of SUSY
breaking.
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Figure 2: The ΛG, ΛS parameter space for Mmess 108 GeV (upper panel), Mmess 1010 GeV
(middle panel) and Mmess 1014 GeV (lower panel). Stop mass contours (500GeV and 1TeV )
are indicated as dotted lines, and the 500GeV and 1TeV gluino lines are solid. The NLSP is
neutralino above the dotted red line and stau below. The marked points are the benchmark
points discussed in the text: circular for neutralino NLSP (PGM1a middle panel, PGM1b bottom
panel), triangular for stau NLSP (PGM2), a star for stau-neutralino co-NLSP (PGM3) on the
bottom panel and finally a square for PGM4 which has stau NLSP and NNLSP.
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Figure 2: The ΛG, ΛS parameter space for Mmess 108 GeV (upper panel), Mmess 1010 GeV
(middle panel) and Mmess 1014 GeV (lower panel). Stop mass contours (500GeV and 1TeV )
are indicated as dotted lines, and the 500GeV and 1TeV gluino lines are solid. The NLSP is
neutralino above the dotted red line and stau below. The marked points are the benchmark
points discussed in the text: circular for neutralino NLSP (PGM1a middle panel, PGM1b bottom
panel), triangular for stau NLSP (PGM2), a star for stau-neutralino co-NLSP (PGM3) on the
bottom panel and finally a square for PGM4 which has stau NLSP and NNLSP.
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are indicated as dotted lines, and the 500GeV and 1TeV gluino lines are solid. The NLSP is
neutralino above the dotted red line and stau below. The marked points are the benchmark
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panel), triangular for stau NLSP (PGM2), a star for stau-neutralino co-NLSP (PGM3) on the
bottom panel and finally a square for PGM4 which has stau NLSP and NNLSP.
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Benchmark point PGM1a PGM1b

Mmess (GeV) 1010 1014

ΛG (GeV) 5 × 104 5 × 104

ΛS (GeV) 2.5 × 105 2.5 × 105

tan β 46.6 41.2

χ0
1 67 67

χ0
2 136 133

χ0
3 1038 936

χ0
4 1039 938

χ±

1 136 134
χ±

2 1039 937
g̃ 458 453

ẽL, µ̃L 927 1013
ẽR, µ̃R 540 712

τ̃1 392 544
τ̃2 898 964

ν̃1,2 925 1011
ν̃3 889 958

t̃1 1418 1050
t̃2 1729 1471

b̃1 1578 1287

b̃2 1731 1471
ũL, c̃L 2011 1760
ũR, c̃R 1803 1520

d̃L, s̃L 1983 1734

d̃R, s̃R 1774 1460

h0 116.9 115.3
A0,H0 944 1032
H± 947 1035

Table 1: Spectra for the two benchmark points. All masses are in GeV. The NLSP and the light-
est coloured super-particle (gluino) are shown in bold in each case. These spectra and all other
relevant details can be obtained in SLHA format at http://www.ippp.dur.ac.uk/∼SUSY

Benchmark Point σpp→g̃g̃ σpp→χ0
2
χ±

1
σpp→χ+

1
χ−

1
σpp→g̃q̃

PGM1a 4090 2682 1320 18.9
PGM1a 4340 2835 1390 58.7

Table 2: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.
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Production at 7TeV: most important processes

Benchmark points

Benchmark Point σpp→g̃g̃ σpp→q̃q̃ σpp→g̃q̃ σpp→q̃ ¯̃q σpp→τ̃iτ̃j σpp→τ̃iν̃τ

Stau 17 190 164 54 91 30
Co-NLSP 16 133 128 34 17 12

Table 3: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.

not performed a detailed simulation, this point should just be within the range of discovery of
the ATLAS detector in the first year of operation [22]. Single production of neutralinos and
charginos in conjuction with a gluino or a squark is negligible.

Finally, we discuss the possibility of a stau-neutralino co-NLSP. If we were to decrease
ΛG very much, this would lead to an unacceptable decrease in the Higgs mass. Therefore we
must increase ΛS in order to achieve mτ̃ ∼ mχ0

1
. The co-NLSP point has ΛG = 1.2 × 105,

ΛS = 4.76 × 104 and tan β = 20.5. The point we have selected has mτ̃1 = 157GeV and mχ0
1
=

157GeV , with neutralino marginally heavier than the stau. As the scalar mass parameter ΛS

has increased somewhat, the squark masses are heavier at this point by around 50GeV compared
with the stau NLSP point. The slepton masses are also higher, and the light smuon and selectron
masses are 181GeV .

@Joerg: Decay channel piecharts?

4 Conclusions

We have made a survey of the phenomenology of Pure General Gauge Mediation – i.e. in which
the Bµ parameter is generated radiatively. We placed a particular emphasis on its testability
in early LHC searches (at 7 TeV). Four benchmark points were presented: two corresponding
to light gluino regions (mg̃ ! 500 GeV with a bino-like neutralino NLSP), one to a stau NLSP
and one to stau/neutralino co-NLSP. These benchmark points are representative of the different
phenomenology that can occur in the regions that are favoured by current experimental fits. We
present a preliminary analysis of the spectrum, production cross sections and branching ratios.
The full set of data in SLHA format for these benchmark points can be found at

http://www.ippp.dur.ac.uk/∼SUSY

We also surveyed and discussed NLSP phenomenology in this set-up, focussing on the possibility
of NLSP decays inside the detector in various different schemes of SUSY breaking. Pure GGM
with medium to low messenger masses (106−10 GeV) can give detectable decays with displaced
vertices inside the detector, and hence direct knowledge of the fundamental scale of SUSY
breaking.
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Decays of gluino:

(Prospino2.1:Beenakker, Hopker Spira Plehn)

(SUSY-HIT:Djouadi Muehlleitner Spira)
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Benchmark Point σpp→g̃g̃ σpp→q̃q̃ σpp→g̃q̃ σpp→q̃ ¯̃q σpp→τ̃iτ̃j σpp→χ0
2χ±

1

Stau 17 190 164 54 91 49
Co-NLSP 16 133 128 34 17 50

Table 3: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.

ΛS = 1.6× 104, which correspond to a moderately large value of tan β = 19. The squark masses
for our benchmark point are in the range 750 − 800 GeV , while the mass of the lightest stop is
617 GeV . The gluino mass is slightly heavier at 880 GeV . The lightest stau mass is 100 GeV ,
just above the bound from direct searches, and the lighest neutralino mass is 156 GeV . The
stau-smuon splitting is 28 GeV . We now turn to the production cross-sections for this point.
As the gluino mass is nearly double that of the neutralino NLSP points PGM1a and PGM1b,
the pp → g̃g̃ cross-section is much smaller. The processes with the largest production cross-
sections for the stau NLSP benchmark point are shown in Table 3.1 in femtobarns. While the
squark production cross-sections are higher than for the PGM1 scenarios, for this point the
total number of SUSY events will be about 600, when one includes the processes with smaller
contributions. While we have not performed a detailed simulation, this point should just be
within the range of discovery of the ATLAS detector in the first year of operation [25]. In the
stau NLSP scenario one does not expect any missing ET since the pair produced staus will turn
up in the calorimeters at the end of the SUSY cascade. Four jets plus two muon-like objects
should thus enable SUSY discovery in these scenarios. Finally, single production of neutralinos
and charginos in conjuction with a gluino or a squark is negligible.

Finally, we discuss the possibility of a stau-neutralino co-NLSP. If we were to decrease
ΛG very much, this would lead to an unacceptable decrease in the Higgs mass. Therefore we
must increase ΛS in order to achieve mτ̃ ∼ mχ0

1
. The co-NLSP point has ΛG = 1.2 × 105,

ΛS = 4.76 × 104 and tan β = 20.5. The point we have selected has mτ̃1 = 157 GeV and mχ0
1

=
157 GeV , with neutralino marginally heavier than the stau. As the scalar mass parameter ΛS

has increased somewhat, the squark masses are heavier at this point by around 50 GeV compared
with the stau NLSP point. The slepton masses are also higher, and the light smuon and selectron
masses are 181 GeV . The production cross-sections are broadly similar to the stau NLSP case,
but somewhat smaller due to the higher masses and more compressed spectrum in this case.

4 Conclusions

We have made a survey of the phenomenology of Pure General Gauge Mediation – i.e. in which
the Bµ parameter is generated radiatively, with a particular emphasis on its testability in early
LHC searches (at 7 TeV). Four benchmark points were presented: two corresponding to light
gluino regions (mg̃ ! 500 GeV with a bino-like neutralino NLSP), one to a stau NLSP and
one to stau/neutralino co-NLSP. These benchmark points are representative of the different
phenomenology that can occur in the regions that are favoured by current experimental fits.
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Figure 3: Piecharts giving a rough impression of the gluino decay chains/branching ratios. In
the first step the gluino decays into the products depicted in the inner ring, in the next step the
daughter sparticle decays into the products given in the outer ring (for simplicity we only write
down the additional decay products for this last decay). We do not display those chains with a
branching ratio less than 5%.

points can be found at
http://www.ippp.dur.ac.uk/∼SUSY

In the following section we will present a more general overview of the NLSP phenomenology.
We shall then perform a complementary analysis, in regions of the parameter space where the
NLSP is a stau or a light slepton or there are co-NLSPs (in practice these are areas where
the stau and neutralino are nearly degenerate in mass). Again we focus on areas that may be
relevant to the early LHC searches.

3 Survey of NLSP phenomenology

In gauge mediated models the Lightest Supersymmetric Particle (LSP) is always the gravitino
[8]. There is much interest therefore in the phenomenology of the Next-to-LSP (NLSP) as
this is the metastable state into which any produced superpartner will decay before ultimately
decaying to the gravitino. Therefore it is instructive to map out the NLSP phenomenology in
the whole ΛG, ΛS parameter space, and describe in more detail some of the top-down models
that correspond to the different regions.

For the assumptions we outlined above, the NLSP is either slepton or neutralino. The NLSP
phenomenology is of great interest for two reasons [8]. First it is typically very long lived – its
decay to the gravitino is suppressed: Γ ∝ m5

NLSP /F 2
0 where mNLSP is its mass and F0 is the

intrinsic scale of supersymmetry breaking in the hidden sector (i.e. the potential is 〈V 〉 = F 2
0 ).

8
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Figure 2: The left panels show the pure GGM parameter space in terms of ΛG, ΛS defined

in Eqs. (2.1) and (2.2). From top to bottom we have Mmess = 108 GeV, 1010 GeV and

1014 GeV. Stop mass contours (500 GeV and 1 TeV ) are indicated as dotted lines, and

the 500 GeV and 1 TeV gluino lines are solid. The NLSP is neutralino above the diagonal

red line and stau below. The panels on the right show 95% exclusion contours derived

from the ATLAS search as red lines, and the black lines indicate uncertainties due to

scale variations in the NLO cross-section. The colour scale for the right panels shows

the expected number of signal events normalised to the exclusion limit. The benchmark

points discussed in [22] are shown as a dot (PGM1a middle panel, PGM1b bottom panel),

triangle for PGM2, a star for PGM3 and finally a square for PGM4.
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Exclusion plots at 35/pb: Dolan, Grellscheid, 
Jaeckel, Khoze, Richardson

Monday, 11 April 2011



0 500 1000 1500 2000
gluino mass [GeV]

0

500

1000

1500

2000

sq
u
ar
k
m
as
s
[G

eV
]

LM9a LM9b

sps9

sps8

PGM1b

PGM1a

SU4
LM0

sps1a
LM1

sps2,5,6
SU3
LM4

SU1,8
LM2a,b,11

sps4

LM3

LM13

LM5
PGM2

sps1b,3,7
SU6,LM6,PGM3

LM8 SU9

CMSSM

Simplified model

Figure 5: This plot shows constraints on the CMSSM for tan β = 3, A0 = 0 and µ > 0
mapped into the plane of the physical squark (average of first generation) and gluino
masses. The kite-shaped area shows the same region of parameter space as in Fig. 3. The
grey area is still allowed, whereas the white region inside the kite is now excluded by the
ATLAS measurements [3]. The region below the diagonal mg̃ � mq̃ is not part of the
CMSSM parameter space due to the influence of the gluino mass on the squark masses
during the RG evolution. The dashed green line gives the constraints obtained from a
simplified model (containing only squarks and gluinos and a massless neutralino) in [3].
The reduced sensitivity in the CMSSM is mainly due to the non-negligible neutralino
mass. The labelled points are the benchmark points of Tab. 1. Red points are now
excluded whereas green points are still viable.
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Deconstructed gaugino mediation and Dirac 
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Majorana masses and SUSY breaking in conflict (R-symmetry/metastability)

R-symmetry can protect the proton

Find reduced FCNCʼs, eliminates EDM problem

Different pheno. (Choi, Drees, Freitas, Zerwas ... Belanger, Benakli, Goodsell, Moura, Pukhov)
 

Dirac gauginos
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To get Dirac masses need to introduce chiral fields in adjoint for every gauge 
group

The masses are of order

Note that this is better than non-metastable Majorana models

However still have a general problem with too light gauginos   
 

Dirac gauginos

We should now consider the scalar σ‖ which could be tachyonic. Indeed the Coleman-
Weinberg potential gives the F -flat direction a tachyonic mass-squared of order

m2
σ‖,CW = − 1

16π2
sin2 ν

µ4
3

µ2
2

. (4.36)

However, assuming gauge couplings of order unity for the flavour groups, the terms that are
induced in the Kähler potential in Eq.(4.15) give a positive contribution;

m2
σ‖,K

∼ 1

16π2
cos2 ν

µ4
3

Λ2
. (4.37)

The latter contribution is dominant for tan ν = m
µ2

< µ2

Λ , or

m <
µ2
2

Λ
. (4.38)

Note that this constraint automatically means that Eq.(4.24) is satisfied; i.e. not only are
there no tachyons, but the values of Ξ where the ρ− becomes tachyonic are far away in field
space.

It is clear in the limit why this mechanism is bound to work. As we take m → 0 the
flat direction is all Ξ and the orthogonal massive direction is all σ+. But only σ+ is in
contact with the supersymmetry breaking, and can get Coleman-Weinberg tachyonic mass-
squared contributions, while the positive Kähler mass-squared contributions are all for the
Ξ direction.

In summary therefore, these three modifications, (i.e. a weakly coupled elementary
adjoint meson in the electric theory, induced higher order Kähler potential terms of natural
size, and an explicit breaking of the ungauged flavour symmetries in the couplings), give a
pure Dirac gaugino whose mass is of order (assuming tan ν = m/µ2 $ 1),

mD ∼ 1

16π2

gcF 2

µ3
2

m

µ2
, (4.39)

and non-tachyonic scalars.

f
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Figure 5: Diagrams contributing to Dirac mass terms at leading order in F/M2.
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1 Introduction

R-symmetry is an important aspect of supersymmetry breaking because it is directly related
to the existence or otherwise of global supersymmetric minima in generic theories [1], and
yet Majorana gaugino masses are bound to break it. Considerable effort has therefore been
devoted to the problem of how to generate acceptably large Majorana gaugino masses whilst
maintaining enough R-symmetry to protect supersymmetry breaking.

An interesting observation that followed on from the work of [2] (ISS) was that strong
dynamics can produce an emergent R-symmetry [3,4]. The authors of Ref. [4] in particular
used the fact that in theories such as ISS, operators that are irrelevant in the ultra-violet
(UV) can become marginal in the infra-red (IR). Dimensional arguments then indicate that
the couplings of such operators can be highly suppressed in the IR, and this can in turn
lead to approximate R-symmetries at low energies, which are preserved, but for these small
effective couplings.

Such emergent R-symmetry can indeed help with Majorana masses. But given the
close link between strong dynamics, R-symmetry and supersymmetry breaking, it seems
interesting to ask if the dynamics of strongly coupled supersymmetric QCD (SQCD) can
instead produce configurations of gauge mediation that have Dirac gaugino masses. These
are by contrast able to respect the all-important R-symmetry required by supersymmetry
breaking, and so can be advantageous from the metastability point of view. Their numerous
other advantages have been documented in a wide ranging program of work [5–20]. This is
the subject of our paper.

One problem that has in the past hampered Dirac gauginos is that, when there is only F -
term supersymmetry breaking, their masses are subleading in an expansion in the breaking
parameter F/M2, because they arise from the operator

L ⊃
∫

d2θ
1

M3
ΣaW a,αD

2
Dα(X

†X) (1.1)

where Σa is the adjoint chiral superfield whose fermion pairs with the gauginos, M is
the messenger mass scale and 〈X〉 = θ2F can preserve R-symmetry. The mass is thus
O(F 2/M3). Actually this is an improvement on models of Majorana gauginos based on
many ISS or O’raifeartaigh models, where, even when R-symmetry is broken, the gaug-
ino mass is third order in the expansion [3, 21–25] unless there is further metastability
at tree-level [26–28]. One solution for both the Majorana and Dirac cases is to have a
low messenger scale where F ! M2 (e.g. [13]), but most work on Dirac gauginos has
used instead D-terms [8, 18, 19, 29–31], where the masses arise from the supersoft opera-
tor L ⊃

∫

d2θ 1
MΣaW a,αW ′

α where 〈W ′
α〉 = θαD is a D-term spurion.

An alternative to this would be instead to suppress the scalar masses, using the screening
that naturally occurs in gaugino mediation; then the suppression of the leading term would
be irrelevant. To this end we present in section 3 a toy model of deconstructed Dirac

gaugino mediation. This provides a generic phenomenological framework for implementing
F -term supersymmetry breaking with Dirac gaugino masses. In deconstructed gaugino
mediation [32–40], the visible gauge groups couple via link-fields to a hidden gauge group
which in turn couples to messengers and so to the supersymmetry breaking sector. The
link-fields develop a vacuum expectation value µ" and higgs the visible and hidden groups
to the MSSM gauge groups at a scale below the messenger scale M . This screens the two-

2
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A second potential problem: for the scalars find 

and typically

tachyons!! 

Dirac gauginos

loop scalar masses by a factor of µ!/M , but the visible gauginos are a linear combination of
the gauginos from the two original gauge groups, and their masses are not suppressed (thus
imitating the spectrum of the original higher-dimensional gaugino mediation [41,42]). If the
ratio µ!/M is sufficiently small, then the two-loop MSSM sfermion masses, given by

m2−loop

f̃
≈

∑

f

C2(f, r)

√
2g2r

16π2

|F |
M

µ!

M
, (1.2)

can be smaller than the three-loop contribution that comes from integrating out the gauginos

m3−loop

f̃
≈

∑

f

C2(f, r)
grmD

2π

√

log[
m2

R

m2
D

] (1.3)

where mD is the Dirac gaugino mass and mR is the mass of the real component of the
adjoint scalar. The latter appears at the leading order, and so the logarithm can provide
a significant enhancement. It is important to realise that these three-loop contributions
remain unscreened and are always present.

In Section 4 we will show that this link-field framework sits very comfortably in a UV
completion based on the ISS model, that both includes supersymmetry breaking and provides
the additional adjoint degrees of freedom for the Dirac gaugino. It is related to the recent
work of [43] which used strong dynamics to provide a deconstructed Majorana gaugino
mediation model. In that case, as mentioned above, even with broken R-symmetry the
Majorana gaugino masses are third order in F/M2, but this suppression could be overcome
by the screening. We shall argue in Section 4 that it is even more natural to consider Dirac
gauginos in this context, because the Dirac masses are naturally heavier than their Majorana
counterparts and there is no required breaking of R-symmetry.

There are three further issues associated with Dirac gaugino masses that our construction
allows us to address. The first is that of the adjoint scalar masses, which in the context of
minimal gauge mediation turn out to be tachyonic. This is because there are two types of
mass terms, given by

L ⊃−m2
ΣΣ

aΣ
a − BΣ

2
(ΣaΣa + Σ

a
Σ
a
)

⊃− 1

2
(m2

Σ +BΣ)|Σa + Σ
a|2 − 1

2
(m2

Σ −BΣ)|Σa − Σ
a|2 (1.4)

and typically we find BΣ > m2
Σ. This problem is solved in the toy model of Section 3 by a

judicious choice of adjoint couplings to the messengers. In the UV completion of section 4
the couplings are more constrained, but there exists a different and rather natural solution:
Kähler potential terms that are generically induced by the strong dynamics. These are able
to lift the erstwhile tachyonic directions. The second problem is unification, which can be
solved by splitting the messenger masses [18] or adding “bachelor” states that complete the
adjoint fields into a broken GUT adjoint multiplet [8]. In our setup, this can acquire a new
solution due to the higgsing of two groups: although we do not examine the issue in great
detail we argue that a form of dual and/or deflected unification should be possible [44, 45].
The final problem is that of scalar tadpoles; since the hypercharge adjoint field is a singlet,
in principle it can acquire a dangerous tadpole term in the potential. However, this does

3
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M
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M
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can be smaller than the three-loop contribution that comes from integrating out the gauginos

m3−loop

f̃
≈

∑

f

C2(f, r)
grmD

2π

√

log[
m2

R

m2
D

] (1.3)

where mD is the Dirac gaugino mass and mR is the mass of the real component of the
adjoint scalar. The latter appears at the leading order, and so the logarithm can provide
a significant enhancement. It is important to realise that these three-loop contributions
remain unscreened and are always present.

In Section 4 we will show that this link-field framework sits very comfortably in a UV
completion based on the ISS model, that both includes supersymmetry breaking and provides
the additional adjoint degrees of freedom for the Dirac gaugino. It is related to the recent
work of [43] which used strong dynamics to provide a deconstructed Majorana gaugino
mediation model. In that case, as mentioned above, even with broken R-symmetry the
Majorana gaugino masses are third order in F/M2, but this suppression could be overcome
by the screening. We shall argue in Section 4 that it is even more natural to consider Dirac
gauginos in this context, because the Dirac masses are naturally heavier than their Majorana
counterparts and there is no required breaking of R-symmetry.

There are three further issues associated with Dirac gaugino masses that our construction
allows us to address. The first is that of the adjoint scalar masses, which in the context of
minimal gauge mediation turn out to be tachyonic. This is because there are two types of
mass terms, given by

L ⊃−m2
ΣΣ

aΣ
a − BΣ

2
(ΣaΣa + Σ

a
Σ
a
)

⊃− 1

2
(m2

Σ +BΣ)|Σa + Σ
a|2 − 1

2
(m2

Σ −BΣ)|Σa − Σ
a|2 (1.4)

and typically we find BΣ > m2
Σ. This problem is solved in the toy model of Section 3 by a

judicious choice of adjoint couplings to the messengers. In the UV completion of section 4
the couplings are more constrained, but there exists a different and rather natural solution:
Kähler potential terms that are generically induced by the strong dynamics. These are able
to lift the erstwhile tachyonic directions. The second problem is unification, which can be
solved by splitting the messenger masses [18] or adding “bachelor” states that complete the
adjoint fields into a broken GUT adjoint multiplet [8]. In our setup, this can acquire a new
solution due to the higgsing of two groups: although we do not examine the issue in great
detail we argue that a form of dual and/or deflected unification should be possible [44, 45].
The final problem is that of scalar tadpoles; since the hypercharge adjoint field is a singlet,
in principle it can acquire a dangerous tadpole term in the potential. However, this does
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also couple the messengers to the adjoint Ξ. This will then generate masses for the adjoint
scalars. These could in principle be tachyonic, but by a judicious choice of couplings we can
avoid such a disaster; as a concrete example with two pairs of messengers we choose:

Wmess =Sf1f̃2 +M(f1f̃1 + f2f̃2) + h1f1Σf̃1 + h2f2Σf̃2. (3.3)

The fi, f̃i are fundamental/anti-fundamental pairs under Ghid acting as messengers, and S
is an F -term spurion. This falls into the class of models studied in [14]; for h2 = −h1 the
messenger couplings are essentially those of [13]. Notice that the superpotential preserves
an R-symmetry (RK = RS = RΞ = Rf2 = Rf̃1

= 2 and RΣ = RL = RL̃ = Rf1 = Rf̃2
= 0)

so that if gaugino masses are generated they will have to be Dirac.
The F -term equation for K causes the link-fields L, L̃ to acquire a VEV, breaking the

gauge group to the diagonal combination. It is convenient to choose the VEVs to be equal
so that 〈L〉 = 〈L̃〉 = µ!, but there is a global symmetry associated with the relative sizes
of these VEVs that leads to a harmless goldstone boson (which could, however, be eaten by
gauging or broken explicitly by other terms).

In the more conventional picture of deconstructed gaugino mediation [34], the gaugino
of the second group is made to acquire a Majorana mass (with the help of additional R-
violating operators), and upon higgsing the groups the lightest, diagonal, gaugino state
acquires this same Majorana mass. However, compared to [34], our toy model has an
additional adjoint field Ξ. This field generates instead a Dirac mass for the second gaugino,
and upon diagonalisation the lightest state is a pure Dirac gaugino. Indeed, the direct
couplings between the messengers and the Ghid group generate Dirac gaugino and adjoint
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and decouples as a free-field. The flow of the theory is then inevitably towards restoring
the exact R-symmetry compatible with the operator Mff f̃ , which appears in the IR as an
emergent symmetry. Finally an operator such as µ2

ISS can arrest the flow at some low scale
so that the erstwhile irrelevant operators are present but suppressed3.
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by a relevant operator in WSUSY−BREAKING and flowing to a new fixed point. At this stage
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this happens repeatedly, as in a duality cascade for example, a number of suppressed f f̃ϕi

couplings could be generated.

3 Deconstructed Dirac gaugino mediation

3.1 Setup
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Section 4. Thus for Gvis = SU(3) × SU(2) × U(1) both indices of the link-fields fall into
diagonal gauge blocks. The superpotential is

W =WMSSM +Whiggsing +Wmess +W
!
!
!SUSY (3.1)

where

Whiggsing =K(
1

5
LL̃− µ2

!) + LΞL̃+mΞΣ (3.2)

is essentially the higgsing superpotential of [34], but with an optional additional mass m
coupling the two adjoints. We have suppressed gauge indices, but the term mΞΣ should be
understood as 2mtrΞΣ = mΞaΣa. K is a Lagrange multiplier singlet field. We can choose
whatever messenger sector we desire, however to generate Dirac gaugino masses we must

3As we said, in the specific case of ISS the µ2
ISS operator explicitly breaks the exact R-symmetry but leaves

intact an anomalous R-symmetry which is a combination of the exact R-symmetry and an anomalous U(1)A,
leading to metastability.
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so that 〈L〉 = 〈L̃〉 = µ!, but there is a global symmetry associated with the relative sizes
of these VEVs that leads to a harmless goldstone boson (which could, however, be eaten by
gauging or broken explicitly by other terms).

In the more conventional picture of deconstructed gaugino mediation [34], the gaugino
of the second group is made to acquire a Majorana mass (with the help of additional R-
violating operators), and upon higgsing the groups the lightest, diagonal, gaugino state
acquires this same Majorana mass. However, compared to [34], our toy model has an
additional adjoint field Ξ. This field generates instead a Dirac mass for the second gaugino,
and upon diagonalisation the lightest state is a pure Dirac gaugino. Indeed, the direct
couplings between the messengers and the Ghid group generate Dirac gaugino and adjoint
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This leaves the lightest state as the Dirac gaugino being composed of λ+ and the linear
combination µ" ς −m η+, with mass given by

mλ = mD
µ"

√
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−
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" )
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+O
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m5
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µ4
"

)

. (3.12)

Note that the supersymmetric masses for the adjoints arise from the terms

W ⊃LΞL̃+mΞΣ

→ −L ⊃|µ"L
a
+ +mΣa|2 + (m2 + µ2

")|Ξa|2 (3.13)

and thus there is a combination of L+ and Σ that is massless at the supersymmetric level.
Once supersymmetry is broken, we find that the lightest adjoint scalar states have mass

squared approximately
µ2
!

m2+µ2

!
(m2

Σ ± BΣ) where mΣ, BΣ are the one-loop masses generated

above in equation (3.4).

3.3 Scales

We can then compare the soft masses in the visible sector. Let us for simplicity take
h1 = −h2 ≡ h. Then the Dirac gaugino masses are

mλ & If
√
2hgr
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16π2

|F |2
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µ"
√

2(m2 + µ2
")

, (3.14)

the two-loop sfermion masses are
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16π2

|F |
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M
, (3.15)

and the three-loop sfermion masses are

m3−loop

f̃
≈

∑

f

C2(f, r)If
√
2hg2r

µ"
√

2(m2 + µ2
" )

1

32π3

|F |2

6M3

√

log[
16π2M2

g2F
] . (3.16)

Clearly the scalar masses are screened in the expected manner. An extremely interesting
feature of this configuration is that when the adjoint mass m is less than µ" it does not
substantially disrupt the Dirac gaugino mass; we can vary it from zero to the order of the
Higgsing scale without suppression. Conversely, when M ∼ m ) µ" the screened masses are
both of order 1

16π2

F
M2µ"; only the ratio F

M2 enters, and the absolute scale of supersymmetry
breaking can be decoupled in this limit.
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combination µ" ς −m η+, with mass given by

mλ = mD
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√

2(m2 + µ2
")

−
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Dµ"

(m2 + µ2
" )

5/2

(

m2µ2
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√
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+O
(
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Note that the supersymmetric masses for the adjoints arise from the terms

W ⊃LΞL̃+mΞΣ

→ −L ⊃|µ"L
a
+ +mΣa|2 + (m2 + µ2

")|Ξa|2 (3.13)

and thus there is a combination of L+ and Σ that is massless at the supersymmetric level.
Once supersymmetry is broken, we find that the lightest adjoint scalar states have mass

squared approximately
µ2
!

m2+µ2

!
(m2

Σ ± BΣ) where mΣ, BΣ are the one-loop masses generated

above in equation (3.4).

3.3 Scales

We can then compare the soft masses in the visible sector. Let us for simplicity take
h1 = −h2 ≡ h. Then the Dirac gaugino masses are

mλ & If
√
2hgr

1

16π2

|F |2

6M3

µ"
√

2(m2 + µ2
")

, (3.14)

the two-loop sfermion masses are

m2−loop

f̃
≈

∑

f

C2(f, r)

√
2g2r

16π2

|F |
M

µ"

M
, (3.15)

and the three-loop sfermion masses are

m3−loop

f̃
≈

∑

f

C2(f, r)If
√
2hg2r

µ"
√

2(m2 + µ2
" )

1

32π3

|F |2

6M3

√

log[
16π2M2

g2F
] . (3.16)

Clearly the scalar masses are screened in the expected manner. An extremely interesting
feature of this configuration is that when the adjoint mass m is less than µ" it does not
substantially disrupt the Dirac gaugino mass; we can vary it from zero to the order of the
Higgsing scale without suppression. Conversely, when M ∼ m ) µ" the screened masses are
both of order 1

16π2

F
M2µ"; only the ratio F

M2 enters, and the absolute scale of supersymmetry
breaking can be decoupled in this limit.
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Full UV completion based in ISS model: May look complicated, but this contains 
the MSSM plus automatically the SUSY breaking, screening, mediating 
sector, link field and mediation superpotentials! 
 

SU(n)1

SU(N )

SU(Ñ )

Ξ

SU(n)F

Figure 3: The UV completion of the model. The central node of the quiver
is the dualizing “colour” group; The external nodes are flavours that we
gauge to give the Standard Model.

Clearly one can more generally add an arbitrary number of mesons in the electric theory,
together with the corresponding Yukawa coupling. These and their counterpart magnetic
mesons will then be integrated out of the magnetic theory. The remaining unpaired mesons
will still appear in the magnetic theory. The sum of the elementary electric mesons, and
the massless composite magnetic mesons is clearly N2

f . We can use this freedom to add
couplings to the electric theory in a block diagonal configuration that explicitly breaks the
flavour symmetry (into n×n and (Nf−n)×(Nf−n) = N×N blocks), so that the remaining
magnetic mesons are of the form

ϕ !

(

ϕ11 −
− ϕ22

)

} n
} N

(4.4)

while the electric ones are

Φ !

(

− Φ12

Φ21 −

)

. (4.5)

The flavour symmetries are broken to SU(Nf ) → SU(n) × SU(N) by this choice. The bar
signifies that the mesons are absent from the theory (not that they are zero). The quarks
can also be split into n× n and N × n blocks (where the second index is colour);

q !

(

q1
q2

)

} n
} N

. (4.6)

For the moment let us retain the maximum possible flavour symmetry in the µ2
ISS operators,

so that the magnetic superpotential takes the form

W (mag) = q1ϕ11q̃1 + q2ϕ22q̃2 − µ2
1ϕ11 − µ2

2ϕ22 (4.7)
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can also be split into n× n and N × n blocks (where the second index is colour);
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For the moment let us retain the maximum possible flavour symmetry in the µ2
ISS operators,

so that the magnetic superpotential takes the form

W (mag) = q1ϕ11q̃1 + q2ϕ22q̃2 − µ2
1ϕ11 − µ2

2ϕ22 (4.7)
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Figure 4: The magnetic Seiberg dual of the quiver in Figure 3. Super-
symmetry is broken by the rank-condition with the SU(Ñ ≡ N − n) node
providing the F -term breaking: FZ #= 0.

where the µ2
1,2 terms again arise from flavour-diagonal quark mass terms in the electric

theory and where the Yukawa couplings are again all set to unity for the moment.
Note that because the off-diagonal block is absent, the rank condition of ISS factorizes.

With the chosen configuration the rank condition is saturated for the upper block which does
not break supersymmetry, while the lower block breaks supersymmetry in the standard ISS
manner. The states in the lower block are therefore split again into entries corresponding
to the n zero and N − n non-zero Fϕ-terms;

ϕ22 !

(

X Y
Ỹ Z

)

} n
} (N − n)

(4.8)

q2 !

(

σ
ρ

)

} n
} (N − n)

. (4.9)

Every F -term that vanishes corresponds to non-zero quark VEVs;

〈q1q̃1〉 = µ2
1

〈σσ̃〉 = µ2
2

〈ρρ̃〉 = 0 . (4.10)

These VEVs break the SU(n)F × SU(n)c flavour/colour symmetry of the σ, σ̃,X block to
its diagonal subgroup, which we refer to as SU(n)σ. This group is orthogonal to the flavour
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Clearly one can more generally add an arbitrary number of mesons in the electric theory,
together with the corresponding Yukawa coupling. These and their counterpart magnetic
mesons will then be integrated out of the magnetic theory. The remaining unpaired mesons
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f . We can use this freedom to add
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The flavour symmetries are broken to SU(Nf ) → SU(n) × SU(N) by this choice. The bar
signifies that the mesons are absent from the theory (not that they are zero). The quarks
can also be split into n× n and N × n blocks (where the second index is colour);

q !

(

q1
q2

)

} n
} N

. (4.6)

For the moment let us retain the maximum possible flavour symmetry in the µ2
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providing the F -term breaking: FZ #= 0.

where the µ2
1,2 terms again arise from flavour-diagonal quark mass terms in the electric

theory and where the Yukawa couplings are again all set to unity for the moment.
Note that because the off-diagonal block is absent, the rank condition of ISS factorizes.

With the chosen configuration the rank condition is saturated for the upper block which does
not break supersymmetry, while the lower block breaks supersymmetry in the standard ISS
manner. The states in the lower block are therefore split again into entries corresponding
to the n zero and N − n non-zero Fϕ-terms;
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(

X Y
Ỹ Z

)

} n
} (N − n)

(4.8)

q2 !

(

σ
ρ

)

} n
} (N − n)

. (4.9)

Every F -term that vanishes corresponds to non-zero quark VEVs;

〈q1q̃1〉 = µ2
1

〈σσ̃〉 = µ2
2

〈ρρ̃〉 = 0 . (4.10)

These VEVs break the SU(n)F × SU(n)c flavour/colour symmetry of the σ, σ̃,X block to
its diagonal subgroup, which we refer to as SU(n)σ. This group is orthogonal to the flavour
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together with the corresponding Yukawa coupling. These and their counterpart magnetic
mesons will then be integrated out of the magnetic theory. The remaining unpaired mesons
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f . We can use this freedom to add
couplings to the electric theory in a block diagonal configuration that explicitly breaks the
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1,2 terms again arise from flavour-diagonal quark mass terms in the electric

theory and where the Yukawa couplings are again all set to unity for the moment.
Note that because the off-diagonal block is absent, the rank condition of ISS factorizes.

With the chosen configuration the rank condition is saturated for the upper block which does
not break supersymmetry, while the lower block breaks supersymmetry in the standard ISS
manner. The states in the lower block are therefore split again into entries corresponding
to the n zero and N − n non-zero Fϕ-terms;
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Every F -term that vanishes corresponds to non-zero quark VEVs;
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1

〈σσ̃〉 = µ2
2

〈ρρ̃〉 = 0 . (4.10)

These VEVs break the SU(n)F × SU(n)c flavour/colour symmetry of the σ, σ̃,X block to
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Clearly one can more generally add an arbitrary number of mesons in the electric theory,
together with the corresponding Yukawa coupling. These and their counterpart magnetic
mesons will then be integrated out of the magnetic theory. The remaining unpaired mesons
will still appear in the magnetic theory. The sum of the elementary electric mesons, and
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f . We can use this freedom to add
couplings to the electric theory in a block diagonal configuration that explicitly breaks the
flavour symmetry (into n×n and (Nf−n)×(Nf−n) = N×N blocks), so that the remaining
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The flavour symmetries are broken to SU(Nf ) → SU(n) × SU(N) by this choice. The bar
signifies that the mesons are absent from the theory (not that they are zero). The quarks
can also be split into n× n and N × n blocks (where the second index is colour);
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where the µ2
1,2 terms again arise from flavour-diagonal quark mass terms in the electric

theory and where the Yukawa couplings are again all set to unity for the moment.
Note that because the off-diagonal block is absent, the rank condition of ISS factorizes.

With the chosen configuration the rank condition is saturated for the upper block which does
not break supersymmetry, while the lower block breaks supersymmetry in the standard ISS
manner. The states in the lower block are therefore split again into entries corresponding
to the n zero and N − n non-zero Fϕ-terms;
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Ỹ Z

)
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} (N − n)

(4.8)

q2 !
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σ
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)
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} (N − n)

. (4.9)

Every F -term that vanishes corresponds to non-zero quark VEVs;

〈q1q̃1〉 = µ2
1

〈σσ̃〉 = µ2
2

〈ρρ̃〉 = 0 . (4.10)

These VEVs break the SU(n)F × SU(n)c flavour/colour symmetry of the σ, σ̃,X block to
its diagonal subgroup, which we refer to as SU(n)σ. This group is orthogonal to the flavour
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SU(Ñ )

Ξ

SU(n)F

Figure 3: The UV completion of the model. The central node of the quiver
is the dualizing “colour” group; The external nodes are flavours that we
gauge to give the Standard Model.

Clearly one can more generally add an arbitrary number of mesons in the electric theory,
together with the corresponding Yukawa coupling. These and their counterpart magnetic
mesons will then be integrated out of the magnetic theory. The remaining unpaired mesons
will still appear in the magnetic theory. The sum of the elementary electric mesons, and
the massless composite magnetic mesons is clearly N2

f . We can use this freedom to add
couplings to the electric theory in a block diagonal configuration that explicitly breaks the
flavour symmetry (into n×n and (Nf−n)×(Nf−n) = N×N blocks), so that the remaining
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The flavour symmetries are broken to SU(Nf ) → SU(n) × SU(N) by this choice. The bar
signifies that the mesons are absent from the theory (not that they are zero). The quarks
can also be split into n× n and N × n blocks (where the second index is colour);
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ISS operators,
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where the µ2
1,2 terms again arise from flavour-diagonal quark mass terms in the electric

theory and where the Yukawa couplings are again all set to unity for the moment.
Note that because the off-diagonal block is absent, the rank condition of ISS factorizes.

With the chosen configuration the rank condition is saturated for the upper block which does
not break supersymmetry, while the lower block breaks supersymmetry in the standard ISS
manner. The states in the lower block are therefore split again into entries corresponding
to the n zero and N − n non-zero Fϕ-terms;
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)

} n
} (N − n)
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Every F -term that vanishes corresponds to non-zero quark VEVs;

〈q1q̃1〉 = µ2
1

〈σσ̃〉 = µ2
2

〈ρρ̃〉 = 0 . (4.10)

These VEVs break the SU(n)F × SU(n)c flavour/colour symmetry of the σ, σ̃,X block to
its diagonal subgroup, which we refer to as SU(n)σ. This group is orthogonal to the flavour
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Find an interesting feature: the absolute scale of SUSY breaking decouples! 

Dirac gauginosgroup of the upper block, which we refer to as SU(n)1. We therefore find a product of
three nonabelian factors, together with two baryon numbers and the exact R-symmetry;
SU(n)1×SU(n)σ ×SU(N −n)ρ×U(1)B ×U(1)B′ ×U(1)R. (The additional U(1)B′ factor is
in the centre of the parent SU(Nf ) symmetry that we have broken by hand with our choice
of meson assignment.)

We now further break the flavour symmetries: for our purposes the flavour symmetries
have to be weakly gauged for the first SU(n)× SU(n) factors so let us now move to a more
general theory consistent with this, in order to avoid massless Goldstone modes associated
with the spontaneous breaking of global symmetry. We can do this by splitting the µ2

2

operator, so that

µ2
ISS !





µ2
1 0 0
0 µ2

2 0
0 0 µ2

3





} n
} n
} (N − n)

. (4.11)

In order to keep the breaking pattern of Eq.(4.10), or equivalently to avoid tachyons, we
require µ2

3 ≤ µ2
2 as we shall shortly see. Later we will also be breaking the flavour symmetry

in the Yukawa couplings.
Thus far, apart from the flavour breaking in the µi’s, the set-up is as described in Ref. [43].

We now come to our first important modification: in the electric theory we add a meson
state Ξ which couples in the superpotential as,

W el ⊃ hξQΞQ̃ . (4.12)

Just as the other mesons Φ12 and Φ21 were identified with bilinears of magnetic quarks, this
meson would ultimately be identified as Ξ ∼ σσ̃/hξΛ. Indeed in the magnetic theory the
Yukawa coupling becomes a mass term for the new adjoint Ξ and the composite meson X,
whose value is m = hξΛ, and integrating out the massive states enforces this identification
in the usual manner. However suppose that the coupling is much smaller than unity, hξ & 1
(which is perfectly acceptable). Then the mass is much less than Λ and could be comparable
to or less than the µ2

i . We are not then entitled to integrate the states out and have to
retain both of them in the magnetic theory. The full renormalizable superpotential (without
integrating out any degrees of freedom due to the effects of the µ2

1 and µ2
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but perhaps more naturally we can choose µ4 = µ1, giving

mbachelor
λ = mD[1 +O(g2, (mD/µ1)

2)]. (4.59)

This therefore provides an elegant solution to the bachelor mass problem while allowing
the supersymmetry breaking sector to be extremely simple, with Ñ = 1 if desired. How-
ever, it is also possible to modify the supersymmetry breaking sector of the model without
reintroducing the problem of bachelor masses: so long as the theory is higgsed to an SU(n)σ
gauge group with Dirac gaugino masses at a scale above µ1 and µ4 then all of the above
holds.

5 Conclusions

A simple model of Dirac gauginos was presented based on a two site “deconstructed gaugino
mediation” model. The model preserves an R-symmetry, thereby evading the metastability
issue that is directly linked to the generation of Majorana masses for gauginos. A UV
completion was also presented by adapting ISS metastable supersymmetry breaking. This
results in a comprehensive model that, as well as the supersymmetry breaking, generates the
necessary additional adjoint degrees of freedom as quarks of the magnetic Seiberg dual ISS
theory. Further, the ISS framework predicts higher order operators in the Kähler potential
that are able to prevent the appearance of the problematic tachyons typically occuring in
Dirac gaugino models (along the flat directions corresponding to the superpartners of the
new light fermionic adjoints).

The spectrum has an unusual lack of dependence on the magnitude of supersymmetry
breaking due to a “screening” that can take place for both the gauginos and the scalars. For
example, in the UV complete theory, the supersymmetry breaking sector has a linear meson
term split into 3 flavour blocks with parameters µ2

i=1..3, and with the non-zero F -term being
µ2
3. In terms of these parameters the light scalar mass is

mf̃ ∼ g2

16π2

(

µ3

µ2

)2

µ1 , (5.1)

upto group theoretical factors, and assuming that µ1 is chosen to be large enough that this
two-loop contribution is still dominant over the three-loop ones. The Dirac gaugino mass is

mλ ∼ g

16π2

(

µ3

µ2

)4

m, (5.2)

where m is an arbitrary mass parameter related to a Yukawa coupling in the UV completion.
Importantly neither quantity depends on the absolute value of the supersymmetry breaking
µ2
3, but just on the ratio µ3/µ2.

A controlled breaking of R-symmetry can be introduced to make the gauginos arbitrarily
pseudo-Dirac. Finally we also pointed out that the R-symmetry breaking associated with
the cancellation of the cosmological constant is mediated to the Standard-Model by anomaly
mediation, providing a lower bound on how purely Dirac the gauginos can be.
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Observations on the Landau pole problem 
(w/ V.V.Khoze)
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SM sector SUSY 
sector

Landau poles in direct gauge mediation:

too many
flavours
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Direct gauge mediation is attractive but typically a problem - a large 
contribution to the beta-functions...

In this case (and typically) since the additional fields are in complete SU(5) 
multiplets there is a universal contribution above messenger scale
 

Landau poles

Since the additional fields are in SU(5) multiplets, the beta functions of

the MSSM gauge couplings are modified universally as

b̄A = b̄(MSSM)
A − 9

To avoid an MSSM Landau pole before unification one requires

(α−1
GUT )(MSSM) ! 9 log(MGUT /µ2)

or

µ ! 109GeV

Dual and deflected Unification – p.14

Landau poles

W mess

1/!

GUT

Dual and deflected Unification – p.15

Landau poles in direct gauge mediation:

Monday, 11 April 2011



SU(5)SM

SU(5)elSU(2)mg

SU(5)SMSU(2)f SU(2)f

The physics of the ISS sector changes at the strong coupling scale (i.e. the 
Landau pole scale of the ISS part of the theory) ...
 

Solution 1: Deflected unification
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So the effective number of degrees of freedom decreases above the 
Landau pole scale of the SUSY-breaking ISS sector ...
 

Deflected unification

W mess

Electric hidden sectorMagnetic hidden

1/!

GUT

Dual and deflected Unification – p.20

Solution 1: Deflected unification
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Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

A Landau pole is avoided if this happens at a low enough scale ... e.g. 

Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

Can be (just about) met by this model.

Landau pole avoided if ...

Solution 1: Deflected unification

Monday, 11 April 2011



Could it be that the MSSM is itself a magnetic dual theory, with apparent 
GUTs in the magnetic theory mirroring unification in electric theory?

 

Magnetic

W GUTmess

Electric

!"!

Solution 2: Dual unification
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This picture is correct in known (Kutasov, Schwimmer, Seiberg) elec/mag duals to 
GUTs with adjoint X that breaks the GUT symmetry! 

Works as follows: first need a superpotential for X ...

Solution 2: Dual unification

Magnetic

W GUTmess

Electric

!"!

Figure 1.1: The dual-unification scenario of Ref.[4]: the supersymmetric Standard Model appears to
run to unphysical gauge unification when there are many messengers in complete SU(5) multiplets.
This is mapped to a real unification occurring in an electric dual description that is valid above
the Landau pole scale.

2 R-symmetry in the deformed KSS model

Let us first revisit the model of KSS in order to see how singlets can be introduced. As we have

said, one of the appealing features of those models was the ability to match the electric and

magnetic theories under deformations of the electric superpotentials

Wel =

k−1�

i=0

ti
k + 1− i

Tr
�
Xk+1−i

�
+ λ Tr [X] (2.1)

where X is an adjoint field of the SU(N) gauge group and we have chosen our basis for X such

that there is no Xk
term as explained in Ref.[7]. The undeformed theory has only the t0 term. The

ti>0 deformations spontaneously break the gauge symmetry and lead to a rich vacuum structure;

it is then possible to show that there exists a similar deformation in the magnetic theory that

produces the same vacuum. There is an aspect of this procedure that we will address in this

section as a warm-up exercise which is this. By adding the extra terms in Eq.(2.1), one breaks

the R-symmetries of the model. In principle therefore the ’t Hooft anomaly matching conditions

apply only to the undeformed theory. However it is often useful to think of couplings such as ti>0

as background R-charged fields that acquire VEVs. Thus a way to match the anomalies directly

in the deformed theory would be to consider these fields as singlets in the spectrum and to do

the anomaly matching on the complete theory. The singlet VEVs can then be fixed at the end to

generate the required R-breaking terms in Eq.(2.1) spontaneously. This is what we will investigate

here.

We commence by summarizing the models of KSS [6, 7] in more detail. They are based on an

SU(N) gauge group with FQ flavours of quarks and anti-quarks, and an adjoint field of the SU(N)

denoted by X. The symmetry content is

SU(FQ)L × SU(FQ)R ×U(1)B ×U(1)R1 ×U(1)R2 . (2.2)

When there is only the t0 term in the superpotential, the global symmetry is partially broken but

retains a U(1)R symmetry. The matter content is then summarised by Table 2.1. When there are

also non-zero ti couplings, the U(1)R-symmetry is completely broken. The F -term equation for

4

KSS

The magnetic theory is

SU(n) = SU(kFQ − N)

and the field content is q, q̃, mj , x where x are adjoints in the magnetic

gauge group, and

mj ≡ Q̃Xj−1Q ; j = 1 . . . k.

The superpotential in the magnetic theory is of the form

Wmag =
k−1
∑

i=0

ti
k + 1 − i

T r(xk+1−i) +
1

µ2

k−1
∑

l=0

tl

k−l
∑

j=1

mj q̃x
k−j−lq

Dual and deflected Unification – p.10

When GUT symmetry unbroken then 
KSS

SU(FQ) SU(FQ) U(1)B U(1)R

Q FQ 1 1
N

1 −

2
k+1

N
FQ

Q̃ 1 FQ −

1
N

1 −

2
k+1

N
FQ

X 1 1 0 2
k+1

Dual and deflected Unification – p.8
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Additional terms give the same GUT breaking in both theories:

Dual unification

WX = 0 is a k order polynomial so there are k roots: hence

〈X〉 =









x1Ir1

x2Ir2

...xkIrk









;
k

∑

i=1

rk = N

The symmetry is broken as

SU(N) → SU(r1) × SU(r2) . . . SU(rk) × U(1)k−1.

Dual and deflected Unification – p.24

Dual unification

The broken model in the magnetic theory is

SU(n) = SU(kFQ − N) → SU(r̄1) × SU(r̄2) . . . SU(r̄k) × U(1)k−1,

where

r̄i = FQ − ri.

Dual and deflected Unification – p.26

Dual unification

The broken model in the magnetic theory is

SU(n) = SU(kFQ − N) → SU(r̄1) × SU(r̄2) . . . SU(r̄k) × U(1)k−1,

where

r̄i = FQ − ri.

Dual and deflected Unification – p.26

where                        .      Example ...

that µ is the scale at which α−1
U(1)(tµ) = −ᾱ−1

U(1)(tµ). Since the slopes of both electric and magnetic

U(1)’s are the same, in order consistently to define the scale µ (i.e. with µ < MGUT ) we require

ᾱGUT < 0, which would mean that the couplings of the magnetic theory are always unphysical.

Equivalently, the unification takes place in the magnetic phase. Such theories are irrelevant to us.

We will therefore focus on theories that have all SQCD factors in the free magnetic range, in this

case 3
2ri > Nf ≥ ri + 1 ∀i. We also require that the magnetic GUT theory is not asymptotically free

while the electric GUT theory is. A necessary condition is that Nf falls within the window given by

Nc

k
< Nf <

Nc

k − 1
2

, (3.55)

where the lower bound comes from the requirement that N̄c > 0 and the upper bound is the condition

that b̄0 < 0. This gives us a strong constraint, since we must have Nc ≥ k(2k − 1). If for example

k = 2, then the minimal case is

Nf = 6
elec: SU(10) → SU(5) × SU(5) × U(1),

mag: SU(2) → U(1)2.

The first case with at least three different group factors in the magnetic theory (i.e. the first non-trivial

unification) is

Nf = 10
elec: SU(15) → SU(8) × SU(7) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

however in this case the matching of the U(1)’s is less clear because the unbroken magnetic theory

has vanishing β-function (2N̄c = Nf ). The first unambiguous case is

Nf = 11
elec: SU(17) → SU(9) × SU(8) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1).

Now let us consider the different scales. We take the GUT scale MGUT > Λ to ensure that

the electric theory unifies in the perturbative (weak coupling) regime. There are then two possible

orderings of the dynamical scales of SU(Nc) and SU(N̄c) consistent with the matching condition:

either Λ̄ < Λ < µ or Λ̄ > Λ > µ. These arise as follows: we have b0 > 0 and b̄0 < 0 and also

|b̄0| < |b0|, and therefore the matching condition (3.18) leads to the two situations shown in figure 4.

(Similar plots hold for the SU(ri) and SU(r̄i) constituent factors, with the replacements Λ → Λi and

µ → µi ∼ µ̂.)

For the first case,

Λ̄ < Λ < µ, (3.56)

the magnetic theory experiences a fake unification below the horizontal axis, but the overall magnetic

SU(5) theory is never realised as a perturbative theory. An example is depicted in figure 5 for the

case

Nf = 13
elec: SU(21) → SU(11) × SU(10) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),
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has vanishing β-function (2N̄c = Nf ). The first unambiguous case is

Nf = 11
elec: SU(17) → SU(9) × SU(8) × U(1),
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Now let us consider the different scales. We take the GUT scale MGUT > Λ to ensure that

the electric theory unifies in the perturbative (weak coupling) regime. There are then two possible

orderings of the dynamical scales of SU(Nc) and SU(N̄c) consistent with the matching condition:
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(Similar plots hold for the SU(ri) and SU(r̄i) constituent factors, with the replacements Λ → Λi and

µ → µi ∼ µ̂.)

For the first case,

Λ̄ < Λ < µ, (3.56)

the magnetic theory experiences a fake unification below the horizontal axis, but the overall magnetic

SU(5) theory is never realised as a perturbative theory. An example is depicted in figure 5 for the

case

Nf = 13
elec: SU(21) → SU(11) × SU(10) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

– 17 –

10 15 20 25 30 35
!200

!100

0

100

200

300

400

500

Log!Q"GeV#

Figure 5: Running inverse couplings in KSS models with broken GUTs with MGUT , µ > Λ > Λ̄ and k = 2 and
assuming t0 = 1. The couplings are U(1) ≡ red/dashed; SU(11) → SU(2) ≡ blue/dotted; SU(10) → SU(3) ≡
dark-blue/solid. We also show the running (in green) of the unbroken theory, the scale µ̂ = µ2/MGUT in solid
grey, and the scale µ in dashed grey. The couplings of the unbroken theories obey ᾱ(µ)−1 = −α(µ)−1, while
those of the SU(ri) subgroups in the broken theories obey ᾱ(µ̂)−1 = −α(µ̂)−1. For this choice of parameters the
unbroken theories have no overlap, but the broken theories do.
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Figure 6: As in figure 5, for Λ̄ > MGUT > Λ > µ.

4. More general models (with coupled sectors)

The KSS models discussed so far were characterized in the IR by a magnetic theory broken into

completely decoupled SQCD factors. The unification in both the electric and magnetic descriptions

– 19 –
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Dual unified SU(5)

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.

Note that the theory we outline below is not the only choice of parameters. One can in fact choose

any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our

main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the

moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed

theory A may not even be necessary if theory B is itself asymptotically free.) The model is based

on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),

with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of

bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an

anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition

in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i

Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i

FJ=1...∆f 1 i

X Adj 1 1

Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we

can take to be a mass term for X. We write down the most general leading (modulo powers of X

which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge

symmetries:

WB =
mX

2
X

2 +
s0

3
X

3 + κiZY X
i
H̃

+λijQ̃X
i
Y Y X

j
H̃ + λ�

ijF̃X
i
Y Y X

j
F̃ + λ��

ijH̃X
i
FQ̃X

j
F + λ���

ij F̃X
i
FF̃X

j
F . (1)

where the couplings carry dimensions.

4
The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the

moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed

theory A may not even be necessary if theory B is itself asymptotically free.) The model is based

on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),

with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of

bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an

anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition

in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp
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Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i

FJ=1...∆f 1 i

X Adj 1 1

Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we

can take to be a mass term for X. We write down the most general leading (modulo powers of X

which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge

symmetries:
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X
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+λijQ̃X
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where the couplings carry dimensions.
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The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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Electric theory:

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.

Note that the theory we outline below is not the only choice of parameters. One can in fact choose

any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our

main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the

moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed

theory A may not even be necessary if theory B is itself asymptotically free.) The model is based

on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),

with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of

bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an

anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition

in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(11) × Sp(1)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(11) Sp(1)a Rp

Ya=1...3 i

Q̃J̄=1...3 ˜ 1 1
H̃J̄=1...3 ˜ 1 −1
F̃J̄=1,2 ˜ 1 −i

FJ=1,2 1 i

X Adj 1 1

Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we
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Theory B
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with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
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eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we

can take to be a mass term for X. We write down the most general leading (modulo powers of X

which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
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Dual unified SU(5)

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.

Note that the theory we outline below is not the only choice of parameters. One can in fact choose

any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our

main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the

moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed

theory A may not even be necessary if theory B is itself asymptotically free.) The model is based

on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),

with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of

bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an

anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition

in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i

Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i

FJ=1...∆f 1 i

X Adj 1 1
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eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we

can take to be a mass term for X. We write down the most general leading (modulo powers of X

which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge

symmetries:
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The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of

Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our

case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)

The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there

exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1

ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E�: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1

aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for

the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour

charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields

are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as

they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3
2

then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The

superpotential is derived from WD with the required additional meson terms. For generic values

of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃�ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)

10

while for the confined theory it is

WE� =
mx

2
x

2 − s0

3
x

3 + κ̃i hx
i

s
h̃ + λ̃ij h̃x

i

s
ax

j

s
q̃ + λUaah + λ̃�

ij
f̃x

i

s
ax

j

s
f̃ + quartic , (25)

Note that one of the low energy higgs fields ha is actually composite, and that if we are thinking

of this as the Georgi-Glashow model, then the κ̃ and λ̃ are required phenomenological couplings,

namely the so called higgs µ-term and down quark mass respectively. In this theory the former

would be tuned to split Higgs doublets and triplets in the usual manner (of which more later).

Theory A and A’
It is straightforward now to see how theory A derives from theory B by "integrating in" some

heavy mesons. Again assuming maximal rank for all the couplings theory A, the full spectrum is

then given by table clear up below ...

Table 6: Theory A: the high energy SU(N)× Sp(M)3 model.

SU(N) Sp(M)a Rp

Ya −i

H̃J̄=1...3M
˜ 1 1

Q̃J̄=1...3M
˜ 1 −1

F̃J̄=1...∆f
˜ 1 i

FJ=1...∆f 1 −i

X Adj 1 1

Ẑa Φ̂i aJ 1 i

χ̂i aJ̄ 1 −i

Σ̂i aJ̄ 1 1
(φ̂H)i ≡ (FX

i
H̃) 1 1 −i

(φ̂Q)i ≡ (FX
i
Q̃) 1 1 i

(φ̂F )i ≡ (FX
i
F̃ ) 1 1 1

WC =
mX

2
X

2 +
s0

3
X

3 + κ̂iZχi

+λ̄ijΦiχj + λ̄�
ij

ΣiΣj + λ̄��
ij

φH iφQ j + λ̄���
ij

φF iφF j

+
s0

µ2
B

�
Φih̃x

1−i

s
y + χiq̃x

1−i

s
y + Σif̃x

1−i

s
y

+ φQ ih̃x
1−i

s
f + φH iq̃x

1−i

s
f + φF if̃x

1−i

s
f

�
. (26)

Finally, given the above it is easy to write down dual theory A. This would be appropriate if

theory B has

N Sp(M) =
N + 1

2
≥ (M + 2) . (27)

We then find a dual theory with gauge group SU(N)× Sp(M̂)3 where

M̂ = N Sp(M) − (M + 2)

=
N − 3

2
−M . (28)
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where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of

Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our

case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)

The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there

exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1

ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E�: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1

aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for

the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour

charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields

are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as

they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3
2

then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The

superpotential is derived from WD with the required additional meson terms. For generic values

of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃�ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)
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2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.

Note that the theory we outline below is not the only choice of parameters. One can in fact choose

any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our

main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the

moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed

theory A may not even be necessary if theory B is itself asymptotically free.) The model is based

on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),

with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of

bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an

anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition

in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i

Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i

FJ=1...∆f 1 i

X Adj 1 1

Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model

to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-

parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the

rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental

pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to

be cubic. Again, other values are possible but the higher you go the more difficult it becomes

to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT

symmetry breaking will be driven by lower order deformations to the X
3 superpotential which we

can take to be a mass term for X. We write down the most general leading (modulo powers of X

which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge

symmetries:

WB =
mX

2
X

2 +
s0

3
X

3 + κiZY X
i
H̃

+λijQ̃X
i
Y Y X

j
H̃ + λ�

ijF̃X
i
Y Y X

j
F̃ + λ��

ijH̃X
i
FQ̃X

j
F + λ���

ij F̃X
i
FF̃X

j
F . (1)

where the couplings carry dimensions.

4
The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.

5

where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of

Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our

case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)

The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there

exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1

ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E�: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1

aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for

the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour

charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields

are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as

they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3
2

then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The

superpotential is derived from WD with the required additional meson terms. For generic values

of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃�ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)
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where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of

Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our

case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)

The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there

exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1

ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E�: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1

aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for

the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour

charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields

are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as

they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3
2

then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The

superpotential is derived from WD with the required additional meson terms. For generic values

of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃�ij f̃xi
saxj
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1
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(aỹỹ + hζỹ) + quartic , (24)
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while for the confined theory it is

WE� =
mx

2
x

2 − s0

3
x

3 + κ̃i hx
i

s
h̃ + λ̃ij h̃x

i

s
ax

j

s
q̃ + λUaah + λ̃�

ij
f̃x

i

s
ax

j

s
f̃ + quartic , (25)

Note that one of the low energy higgs fields ha is actually composite, and that if we are thinking

of this as the Georgi-Glashow model, then the κ̃ and λ̃ are required phenomenological couplings,

namely the so called higgs µ-term and down quark mass respectively. In this theory the former

would be tuned to split Higgs doublets and triplets in the usual manner (of which more later).

Theory A and A’
It is straightforward now to see how theory A derives from theory B by "integrating in" some

heavy mesons. Again assuming maximal rank for all the couplings theory A, the full spectrum is

then given by table clear up below ...

Table 6: Theory A: the high energy SU(N)× Sp(M)3 model.

SU(N) Sp(M)a Rp

Ya −i

H̃J̄=1...3M
˜ 1 1

Q̃J̄=1...3M
˜ 1 −1

F̃J̄=1...∆f
˜ 1 i

FJ=1...∆f 1 −i

X Adj 1 1

Ẑa Φ̂i aJ 1 i

χ̂i aJ̄ 1 −i

Σ̂i aJ̄ 1 1
(φ̂H)i ≡ (FX

i
H̃) 1 1 −i

(φ̂Q)i ≡ (FX
i
Q̃) 1 1 i

(φ̂F )i ≡ (FX
i
F̃ ) 1 1 1

WC =
mX

2
X

2 +
s0

3
X

3 + κ̂iZχi

+λ̄ijΦiχj + λ̄�
ij

ΣiΣj + λ̄��
ij

φH iφQ j + λ̄���
ij

φF iφF j

+
s0

µ2
B

�
Φih̃x

1−i

s
y + χiq̃x

1−i

s
y + Σif̃x

1−i

s
y

+ φQ ih̃x
1−i

s
f + φH iq̃x

1−i

s
f + φF if̃x

1−i

s
f

�
. (26)

Finally, given the above it is easy to write down dual theory A. This would be appropriate if

theory B has

N Sp(M) =
N + 1

2
≥ (M + 2) . (27)

We then find a dual theory with gauge group SU(N)× Sp(M̂)3 where

M̂ = N Sp(M) − (M + 2)

=
N − 3

2
−M . (28)
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Application to proton decay - why does nature seem to unify but the proton not decay?
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Figure 8: Proton decay in simple SU(5) SUSY GUTs generated by dimension 6 and dimension 5 operators
respectively.

SU(3)c indices, the offending terms in the Lagrangian are of the form

LA(X),A(Y ) =
ig√
2
(Aµ

IKX̄JIγµXKJ + Aµ
IKQ̄IγµQK)

⊃ ig√
2
A(X)µ

ia (εijkū
c
kγµqja + q̄ibγµe+

ab + d̄iγµla) (5.1)

where e+
ab = e+εab is an antisymmetric singlet of SU(2)L which comes from the antisymmetric 10 of

SU(5). For the moment we are using the usual nomenclature of the MSSM - thus the right-handed

fields are denoted uc and dc, ec, and the left-handed doublets q and l. So integrating out A(X)
µ generates

a term

Leff ⊃ g2

2M2
GUT

εijkεab(q̄ajγµuc
k)(q̄ibγµe+) . (5.2)

Note that the effective operator is a baryon of SU(3) (and also a baryon of SU(2)). Indeed the

new operators, since they must violate baryon number but also respect gauge invariance, can only be

baryons. The nett result is that the proton can decay via processes such as p → π0e+ as in figure 8a.

These are the dimension 6 operators which exists in SU(5) unification. In supersymmetric theories

one also has dimension 5 operators that contribute at one-loop due to the presence of Higgs triplets,

Q̃T ≡ 3̄ and QT ≡ 3, that couple via the Yukawa couplings of the MSSM:

W ⊃ hu

4
εIJKLMXIJXKLHM + hdXIJQIH̃J ⊃ huU c

i EcQT i + hdεijkU
c
i Dc

jQ̃T k , (5.3)

and similar for left handed fields. These give rise via figure 8b to the most dangerous operators; for

example those involving just the right handed fields are of the form

Leff ⊃ g2huhd

16π2MSUSY MGUT
εijk(u

c
ie

c)(uc
jd

c
k) . (5.4)

where hu and hd are the Yukawa couplings of the MSSM. Note that in this estimate, thanks to the non-

renormalization theorem, the one loop integral is dominated by the low momentum region k ! MSUSY ,

and so MSUSY appears in the denominator. In the low energy limit the diagram is equivalent to first

evaluating the non-renormalizable terms in an effective theory,

Weff ⊃ huhd

MGUT
εijk(E

cU c
i U c

j Dc
k) , (5.5)
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Figure 9: Approximation to figure 8b in which the dimension 5 operator is evaluated in the electric theory.

and then computing the diagram in figure 9 with its corresponding 4-point vertex.

In a dual-unified theory however, although the magnetic theory appears to be unified, proton

decay has to go through the electric theory since that is where the vector fields and Higgs triplets gain

their mass. At this energy scale the magnetic theory is strongly coupled and one must instead use

the weakly coupled electric theory description. In principle this could always be done by using the

diagram in figure 9. One would first compute the relevant operator in the electric theory and then

map it to the corresponding operators in Weff of the magnetic theory via Seiberg duality.

If one can find the electric dual of the SSM and its GUT theory, one has a ready mapping between

the baryonic operators involved. Since we do not yet know of a such theory, we will present a general

argument for what happens, and then support it by examining an analogous process in a theory where

both the dual theories are known, namely that of the previous section [22,23].

First the general argument. Suppose that SU(3)c baryons of the SSM are mapped to baryons of

SU(Nc) in the electric dual. Our generic picture is that the SU(3)c group factor is strongly coupled

in the UV above the messenger scale and the SU(Nc) factor is asymptotically free. Hence Nc > 3,

and as we have seen it is typically much larger. Therefore the baryon in the electric theory into which

Weff maps will have dimension > 4; let us call this dimension d, so that schematically the baryon

mapping would be

εijkE
cU c

i U c
j Dc

k → Λ4−dχd , (5.6)

where χ represents generic fields of the electric theory. (For convenience we are setting the dynamical

scales Λ and Λ̄ to be equal.) Now we must look to the electric theory to generate the operator in an

honest perturbative tree-level diagram involving propagators with MGUT scale masses. On dimensional

grounds we will find

Wel ⊃
χd

Md−3
GUT

. (5.7)

Note that this is the largest such an operator could be. In principle the operator could be smaller

if non-renormalizable Planck suppressed operators are involved (in which case powers of M−1
P l would

have to be accommodated as well). The relevant baryon number violating operator induced in the

– 25 –

effective magnetic theory would then be

Weff ⊃
(

Λ

MGUT

)d−4 1

MGUT
εijkE

cU c
i U c

j Dc
k . (5.8)

Hence the proton decay gets an extra
(

Λ
MGUT

)d−4
suppression compared with (5.5), which for even

modestly small Λ would make it ineffective.

It is perhaps clearer why this happens if one begins by building equivalents to figure 8b in the

electric theory. In order to generate gauge invariant operators, all such diagrams would have many

more quark legs since they have to correspond to baryons of the electric theory. At low external

momenta these quark legs confine into electric baryons, which can then be mapped into magnetic

baryons with the accompanying supression. (Of course the magnetic SU(3)c theory only becomes

confining again well below the messenger scale.)

Now let us show explicitly that this happens in an analogous process. Consider the two adjoint

models of eq.(4.4), with k = 4 and m = 0 in which the broken model is6

elec: SU(2n) → SU(n) × SU(n)′ × U(1)

mag: SU(6) → SU(3) × SU(3)′ × U(1)
(5.9)

where 6Nf −n = 3. We use a prime to distinguish the second SU(n) factor; i.e. in the broken theories

the field content is Nf flavours of quarks and antiquarks (labelled Q, Q̃ and Q′, Q̃′ in the electric theory

and q, q̃ and q′, q̃′ in the magnetic theory), a single massless adjoint for each SU factor (labelled X,

X ′ in the electric theory and Y , Y ′ in the magnetic theory) and a pair of massless bifundamentals

(labelled F , F̃ in the electric theory and f , f̃ in the magnetic theory).

Since the models do not contain asymmetric representations we have to improvise a little: we will

suppose that the operator of interest in the low energy theory is

Weff ⊃ κ

MGUT
εijk(Y q)iqjqk . (5.10)

Here the adjoint, which has zero baryon number, has replaced the right handed electron Ec, which

came from the antisymmetric in SU(5). We are interested in estimating the value of the constant

κ. We require the baryon mappings of the broken theory which may be obtained from ref. [22]; they

involve both the fundamental and the “dressed” quarks (i.e. quarks multiplied by some combination

6Note that refs. [22, 23] also considered the SU(n) × SU(n′) structure with n
′ "= n and also N

′

f "= Nf for which

electric/magnetic duality was established, but the unification in this case is more obscure.

– 26 –
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Note that the effective operator is a “baryon”:

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

N + 1 ≤ FQ ≤
3

2
N

tE = log(E)

bitΛi + bitΛi
= (bi + bi)tGUT − (b0 + b0)tGUT

Λb0Λ
b̄0

= µ̂b0+b̄0 .

ΛbiΛ
b̄i

= µbi+b̄i

i .

εijkEcU c
i U c

j Dc
k ↔ Λ4−dQd

(

Λ̄i

MGUT

)b̄i

= const ≡ e
−

8π2

ḡ2(MGUT )

SO(32)

µi =
µ2

MGUT
≡ µ̂

Wel ∼
Qd

Md−3
GUT

ᾱ−1 = −α−1
GUT + (b0 + b̄0)(tGUT − tµi)

εAA(AQ̃) ⊃ εEUUD

1
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The baryon number violation proportional to a baryon operator in the magnetic
 theory but this is generated in the electric theory: on dimensional grounds expect 

where       represents generic electric fields and d is at least N.

But we know how to map to the operator in the magnetic theory

hence

effective magnetic theory would then be

Weff ⊃
(

Λ

MGUT

)d−4 1

MGUT
εijkE

cU c
i U c

j Dc
k . (5.8)

Hence the proton decay gets an extra
(

Λ
MGUT

)d−4
suppression compared with (5.5), which for even

modestly small Λ would make it ineffective.

It is perhaps clearer why this happens if one begins by building equivalents to figure 8b in the

electric theory. In order to generate gauge invariant operators, all such diagrams would have many

more quark legs since they have to correspond to baryons of the electric theory. At low external

momenta these quark legs confine into electric baryons, which can then be mapped into magnetic

baryons with the accompanying supression. (Of course the magnetic SU(3)c theory only becomes

confining again well below the messenger scale.)

Now let us show explicitly that this happens in an analogous process. Consider the two adjoint

models of eq.(4.4), with k = 4 and m = 0 in which the broken model is6

elec: SU(2n) → SU(n) × SU(n)′ × U(1)

mag: SU(6) → SU(3) × SU(3)′ × U(1)
(5.9)

where 6Nf −n = 3. We use a prime to distinguish the second SU(n) factor; i.e. in the broken theories

the field content is Nf flavours of quarks and antiquarks (labelled Q, Q̃ and Q′, Q̃′ in the electric theory

and q, q̃ and q′, q̃′ in the magnetic theory), a single massless adjoint for each SU factor (labelled X,

X ′ in the electric theory and Y , Y ′ in the magnetic theory) and a pair of massless bifundamentals

(labelled F , F̃ in the electric theory and f , f̃ in the magnetic theory).

Since the models do not contain asymmetric representations we have to improvise a little: we will

suppose that the operator of interest in the low energy theory is

Weff ⊃ κ

MGUT
εijk(Y q)iqjqk . (5.10)

Here the adjoint, which has zero baryon number, has replaced the right handed electron Ec, which

came from the antisymmetric in SU(5). We are interested in estimating the value of the constant

κ. We require the baryon mappings of the broken theory which may be obtained from ref. [22]; they

involve both the fundamental and the “dressed” quarks (i.e. quarks multiplied by some combination

6Note that refs. [22, 23] also considered the SU(n) × SU(n′) structure with n
′ "= n and also N

′

f "= Nf for which

electric/magnetic duality was established, but the unification in this case is more obscure.
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In this case (X is dimensionless)... 
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Concussion

  SUSY is possible at the LHC

  Personally I think something like R-symmetric models may solve much of the fine-  
     tuning of the MSSM

  Even if nature doesn’t need SUSY, it can still teach us a lot about confinement, strong  
     coupling etc thanks to fantastic properties such as holomorphy etc. 
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