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Abstract

In this paper we study the Ulam-Hyers stability of some linear and nonlinear
dynamic equations and integral equations on time scales. We use both direct
and operatorial methods and we propose a unified approach to Ulam-Hyers
stability based on the theory of Picard operators (see [29] and[34]). Our results
extend some recent results from [25],[26], [8], [14], [13] to dynamic equations
and are more general than the results from [1].

The operatorial point of view, based on the theory of Picard operators, allows
to discuss the Ulam-Hyers stability of many types of differential- and integral
equations on time scales and also to obtain simple and structured proofs to the
existing results, but as we point out at our final remarks there are also a few
disadvantages.
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1. Introduction

1.1. The Ulam-Hyers stability

In 1940, S.M. Ulam gave a wide range of talks at the Mathematics Club of
the University of Wisconsin, in which discussed a number of important unsolved
problems. These problems were also discussed in ([38]). Among those was the
question concerning the stability of group homomorphisms, namely:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given
ε > 0 does there exists a δ > 0 such that if a function h : G1 → G2 satisfies the
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inequality
d(h(xy), h(x)h(y)) < δ, ∀x, y ∈ G1,

then there exists a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε, ∀x ∈ G1?

The case of approximately additive functions was solved in the next year by
D.H. Hyers ([18]) under the assumption that G1 and G2 are Banach spaces. He
proved that each solution of the inequality

||f(x+ y)− f(x)− f(y)|| ≤ ε, ∀x, y ∈ G1,

can be approximated by an exact solution, an additive function. In this case,
the Cauchy additive functional equation, f(x+ y) = f(x)+ f(y), is said to have
the Ulam-Hyers stability.

Since then, the stability of many algebraic, functional, differential, integral,
operatorial equations have been extensively investigated (see [10]-[14],[25],[21],[32]
and the references therein).

In the near past many research papers have been published about the Ulam-
Hyers stability of functional, differential and difference equations. The main
tool used by the authors for obtaining stability results was the direct method
(see [19]). Recently I. A. Rus developed a unified approach based on Gronwall
type inequalities and Picard operators (see [32], [35]). This approach can be
applied to a wide range of problems (see [15], [16], [24]).

We recall the following definitions:

Definition 1.1 ([32]). Let (X, d) be a metric space and A : X → X be an
operator. By definition, the fixed point equation

x = A(x) (1.1)

is said to be Ulam-Hyers stable if there exists a real number cA > 0 such that:
for each ε > 0 real number and each solution y∗ of the equation

d(y,A(y)) ≤ ε,

there exists a solution x∗ of the equation (1.1) such that

d(y∗, x∗) ≤ cA · ε.

Definition 1.2 ([35]). The equation

x′(t) = f(t, x(t)), ∀t ∈ [a, b) (1.2)

is Ulam-Hyers stable if there exists a real number cf > 0 such that for each
ε > 0 and for each solution y ∈ C1([a, b)) of the inequation

|y′(t)− f(t, y(t))| < ε, ∀t ∈ [a, b)

there exists a solution x ∈ C1([a, b)) of the equation 1.2 with the property

|y(t)− x(t)| ≤ cfε, ∀t ∈ [a, b).
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Remark 1.3. These definitions show that on a bounded interval these two no-
tions are the same if X is the space of continuous functions and d is the Cheby-
shev metric while on an unbounded interval the Ulam-Hyers stability of the
differential equation is not equivalent with the Ulam-Hyers stability of the corre-
sponding integral equation because the Chebyshev functional cannot be defined
on C[0,∞) (only on CB[0,∞)).

1.2. Time scale analysis

The time scale calculus was founded by Stefan Hilger in his PhD thesis (see
[17]) as a unification of the classical real analysis, the q-calculus and the theory
of difference equations. Since then this theory has been extensively studied in
order to obtain a better understanding and a unified viewpoint of mathematical
phenomenons occurring in the theory of difference equations and in the theory
of differential equations. For an excellent introduction to the calculus on time
scales and to the theory of dynamic equations on time scales we recommend the
books [3] and [4] by M. Bohner and A. Peterson. Throughout in this paper we
use the basic notations from these books. For the sake of coherency we recall a
few basic definitions, notations and theorems from [3].

Definition 1.4. A time scale T is an arbitrary nonempty closed subset of the
real numbers R.

Definition 1.5. We define the jump operators σ, ρ : T → R by the relations

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}

Using these operators we can classify the points of time scale T as left dense,
left scattered, right dense and right scattered according to whether ρ(t) = t,
ρ(t) < t, σ(t) = t and σ(t) > t respectively.

Definition 1.6. A function f : T → R is said to be rd-continuous if it is
continuous at each right dense point in T. The set of all rd-continuous functions
is denoted by Crd. If T has left scattered maximum m, then

T
κ =

{

T \ {m} if supT < ∞

T if supT = ∞
(1.3)

We define the graininess function µ : Tκ → R by the relation

µ(t) = σ(t)− t.

We also define for f the function fσ : Tκ → R by

fσ(t) = f(σ(t)), ∀t ∈ T.

Definition 1.7. Let f : T → R be a function and let t ∈ T
κ. Then we define

f∆(t) to be the number (provided if exists) with the property that given any
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ε > 0, there is a neighborhood U of t (i.e. U = (t− δ, t+ δ)∩T for some δ > 0)
such that

∣

∣[fσ(t)− f(s)]− f∆(t) [σ(t)− s]
∣

∣ ≤ |σ(t) − s|, ∀s ∈ U.

We call f∆(t) the delta (or Hilger) derivative of f at t.

Theorem 1.8. Assume f : T → R is a function and let t ∈ Tκ. Then we have
the following:

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at

t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists and is a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Definition 1.9. A function F : T → R is said to be an antiderivative of
f : T → R provided F∆(t) = f(t) holds for all t ∈ T

κ. We define the integral of
f by

∫ t

s

f(τ)∆τ = F (t)− F (s), (1.4)

where s, t ∈ T.

Definition 1.10. The function p : T → R is said to be regressive if 1+µ(t)p(t) 6=
0, for all t ∈ T

κ. We denote by R = R(T) = R(T,R) the set of all regressive
and rd-continuous functions and define

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}. (1.5)

Definition 1.11. For p ∈ R we define (see [3]) the exponential function ep(·, t0)
on the time scale T as the unique solution to the scalar initial value problem

x∆(t) = p(t)x(t), x(t0) = 1. (1.6)

If p ∈ R+, then ep(t, t0) > 0, for all t ∈ T. We note that, if T = R, the
exponential function is given by

ep(t, s) = exp
(

∫ t

s

p(τ)dτ
)

, eα(t, s) = exp(α(t− s)), eα(t, 0) = exp(αt),

(1.7)
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for s, t ∈ R, where α ∈ R is a constant and p : R → R is a continuous function.
To compare with the discrete case, if T = Z (the set of integers), the exponential
function is given by

ep(t, s) =
t−1
∏

τ=s

[1 + p(τ)], eα(t, s) = (1 + α)t−s, eα(t, 0) = (1 + α)t, (1.8)

for s, t ∈ Z with s < t, where α 6= −1 is a constant and p : Z → R is a sequence
satisfying p(t) 6= −1 for all t ∈ Z.

Theorem 1.12 (Properties of the exponential function). If p, q ∈ R, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vi)
ep(t,s)
eq(t,s)

= ep⊖q(t, s);

(vii)
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s)

,

where for all p, q ∈ R we define

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t),

and

(⊖p)(t) := −
p(t)

1 + µ(t)p(t)
,

for all t ∈ Tκ.
We remark, that (R,⊕) is an Abelian group, called the regressive group.

For recent developments regarding the exponential functions on timescales
we recommend [7].

1.3. Picard operators and applications

The Picard operator technique was applied by many authors to study some
functional nonlinear integral equations, see for example [9], [28]-[34], [36]. In
what follows we use the terminology and notations from [28], [29], [30].

Let (X,→) be an L-space ([29]), A : X → X an operator. We denote by
FA the fixed points of A. We also denote A0 := 1X , A1 := A, . . . , An+1 :=
An ◦A, n ∈ N the iterate operators of the operator A. We also define A∞(x) :=
lim
n→∞

An(x) if the limit exists.

Definition 1.13 ([32]). By definition A : X → X is weakly Picard operator if
the sequence of successive approximations, An(x), converges for all x ∈ X and
the limit (which may be dependent on x) is a fixed point of A.
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Definition 1.14 ([28], [29], [30]). A is a Picard operator (briefly PO), if there
exists x∗

A ∈ X such that:
(i) FA = {x∗

A};
(ii) An(x) → x∗

A as n → ∞, ∀x ∈ X.
Equivalently we can say, that if for a weakly Picard operator A : X → X

FA = {x∗
A}, then A is a PO.

The following class of weakly Picard operators is very important in our
consideration. Let (X, d) be a metric space.

Definition 1.15 ([32]). Let A : X → X be a weakly Picard operator and c > 0
a real number. By definition the operator A is c-weakly Picard operator if

d(x,A∞(x)) ≤ c · d(x,A(x)), ∀x ∈ X.

We present two examples for c-weakly Picard operators from [32].

Example 1.16. Let (X, d) be a complete metric space and A : X → X an
operator with closed graphic. We suppose that A is graphic α-contraction, i.e.

d(A2(x), A(x)) ≤ α · d(x,A(x)), ∀x ∈ X.

Then A is a c-weakly Picard operator, with c = (1− α)−1.

Example 1.17. Let (X, d) be a complete metric space, ϕ : X → R+ a function
and A : X → X an operator with closed graph. We suppose that:

(i) A is a ϕ-Caristi operator, i.e.

d(x,A(x)) ≤ ϕ(x) − ϕ(A(x)), ∀x ∈ X ;

(ii) there exists c > 0 such that

ϕ(x) ≤ c · d(x,A(x)), ∀x ∈ X.

Then A is a c-weakly Picard operator.

An interesting remark on Ulam-Hyers stability for c-weakly Picard operators
is given bellow.

Theorem 1.18 ([32]-Remark 2.1). Let (X,d) be a metric space. If A : X → X
is a c-weakly Picard operator, then the fixed point equation (1.1) is Ulam-Hyers
stable.

2. Linear dynamic equations with constant coefficients

First we recall some examples regarding Ulam-Hyers stability of differential,
difference and dynamic equations.
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Example 2.1. ([8] and [22]) The differential equation y′ = ay, a ∈ R is Ulam-
Hyers stable if and only if a 6= 0. Moreover, the equation

y(n) −

n
∑

k=1

aky
(n−k) = 0,

where aj ∈ R, 1 ≤ j ≤ n is Ulam-Hyers stable if and only if the characteristic
equation has no pure imaginary roots.

Example 2.2. ([26]) The difference equation yn+1 = ayn, a ∈ R is Ulam-Hyers
stable if and only if |a| 6= 1. Moreover, the equation

yn+p =

p−1
∑

k=0

akyn+k,

where ak ∈ R, 0 ≤ k ≤ p− 1 is Ulam-Hyers stable if and only if the modulus of
the roots of the corresponding characteristic equation are different from 1.

Example 2.3. If T = {t0, t1, . . . , tn, . . .} with t0 = 1, µ(t2j) = 1
(2j+2)2 and

µ(t2j−1) = 2− 1
(2j+1)2 , then

|e−1(tj , t0)| =

j+1
∏

k=2

(

1−
1

k2

)

=
1

2
·
j + 2

j + 1
,

hence |e−1(t, t0)| is bounded on [t0,∞)T and lim
t→∞

∫ t

t0
|e−1(s, t0)|∆s = ∞. This

property and the representation 2.5 imply that the equation y∆ = −y is not
Ulam-Hyers stable.

These (and also other) examples shows that the Ulam-Hyers stability of
linear dynamical equations with constant coefficients on a timescale T is closely
related to the behavior of the exponential functions defined on T. Moreover,
this behavior is connected also with the inner structure of the timescale, not
only with the constants (or functions) defining the exponential functions. For
this reason we formulate our results in terms of the asymptotical behavior of
the exponential functions and by some remarks we emphasize special classes of
constants, for which we have Ulam-Hyers stability. Let a ∈ C be a complex
number and T a time scale. Consider the following conditions:

S1 |ea(t, t0)| and
∫ t

t0
|ea(t, σ(s))|∆s are bounded on [t0,∞)T;

S2 lim
t→∞

|ea(t, t0)| = ∞ and
∫∞

t
|ea(t0, σ(s))|∆s < ∞, for all t ∈ [t0,∞)T;

S3 |ea(t, t0)| is bounded on [t0,∞)T and lim
t→∞

∫ t

t0
|ea(s, t0)|∆s = ∞.

Remark 2.4. a) If T = R, and |a| 6= 0, one of the conditions S1 and S2 holds.
b) If T = Z and a /∈ {−2, 0}, one of the conditions S1 and S2 holds.
c) If t0 = 1, µ(t2j) =

1
(2j+2)2 and µ(t2j−1) = 2− 1

(2j+1)2 , then the exponential

function e−1(t, t0) changes sign on each interval [tj , tj+1] and condition S3 holds.
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d) There are timescales T for which the modulus of some exponential func-
tions has arbitrary large and arbitrary small values on each interval [t,∞). In
such a case none of the previous conditions hold.

Theorem 2.5. Consider the following dynamic equation:

{

y∆(t) = ay(t) , (2.1)

where a ∈ C is a complex number. If S1 or S2 holds, then the above equa-
tion is Ulam-Hyers stable on [t0,+∞)T. The same property is valid also for the
inhomogeneous equation.

Theorem 2.6. Consider the following nth order dynamic equation:
{

y∆(n) −
n
∑

k=1

aky
∆(k) = 0 (2.2)

Denote by λ1, λ2, . . . λn the roots of the characteristic equation

rn −

n
∑

k=1

akr
n−k = 0.

If 1 + µ(t)λj 6= 0, ∀t ∈ T for all 1 ≤ j ≤ n, and for each λj S1 or S2 is verified,
then equation (2.2) is Ulam-Hyers stable on [t0,+∞)T.

Remark 2.7. If a > 0, the exponential function ea(t, t0) is positive, hence the
integrals in S1, S2 and S3 can be calculated effectively. In this case equation 2.1
is always Ulam-Hyers stable. If a = 0, the equation y∆(t) = 0 has only constant
solution, while the perturbed equation y∆(t) = ε has the solution y(t) = y(t0)+
ε(t− t0), hence the equation 2.1 is not Ulam-Hyers stable. The same example
shows that if at least one of the roots λ1, λ2, . . . , λn is pure imaginary, then
the equation 2.2 is not Ulam-Hyers stable. The condition 1 + µ(t)a 6= 0 (and
1 + µ(t)λj 6= 0, 1 ≤ j ≤ n) is necessary for the existence of the corresponding
exponential function(s).

Remark 2.8. The previous theorems are extensions of the results from [25], [8],
[13] and [26]. In [26] the critical value seems to be 1, but this is only because
the equation is in the form yn+1 = ayn which is y∆ = (a− 1)y.

Proof of theorem 2.5. The solution of the equation 2.1 is

y(t) = y0ea(t, t0). (2.3)

The solution of the perturbed equation

z∆(t) = az(t) + h(t), (2.4)

can be represented as

z(t) = z0ea(t, t0) +

∫ t

t0

h(s)ea(t, σ(s))∆s. (2.5)
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We need to estimate the difference between y(t) and z(t), if |h(t)| < ε, ∀t ∈ T.
Case 1. If S1 holds, we have

|z(t)− y(t)| =
∣

∣

∣
(z0 − y0)ea(t, t0) +

∫ t

t0

h(s)ea(t, σ(s))∆s
∣

∣

∣
≤

≤ |(z0 − y0)| · |ea(t, t0)|+ ε

∫ t

t0

|ea(t, σ(s))|∆s.

These inequalities imply that if M1 > 0 is an upper bound for |ea(t, t0)| and

M2 > 0 an upper bound for
∫ t

t0
|ea(t, σ(s))|∆s, then by choosing y0 such that

|y0 − z0| < ε, we have |y(t)− z(t)| < ε(M1 +M2), for all t ∈ [t0,∞)T.

Remark 2.9. If T = R and a < 0, this situation occurs.

Case 2. If S2 holds a 6= 0 and we have

|z(t)− y(t)| =
∣

∣

∣
(z0 − y0)ea(t, t0) +

∫ t

t0

h(s)ea(t, σ(s))∆s
∣

∣

∣
≤

≤ |ea(t, t0)|

∣

∣

∣

∣

z0 − y0 +

∫ t

t0

h(s)ea(t0, σ(s))∆s

∣

∣

∣

∣

From condition S2 we deduce that the improper integral
∫∞

t0
h(s)ea(t0, σ(s))∆s

is absolutely convergent, hence it is also convergent. If we choose

y0 = z0 +

∫ ∞

t0

h(s)ea(t0, σ(s))∆s,

we have

|z(t)− y(t)| ≤ ε

∣

∣

∣

∣

ea(t, t0) ·

∫ ∞

t

ea(t0, σ(s))∆s

∣

∣

∣

∣

.

But
∞
∫

t

ea(t0, σ(s))∆s = −
1

a

∞
∫

t

−a

(1 + µ(s)a)ea(s, t0)
∆s =

= −
1

a

[

lim
s→∞

1

ea(s, t0)
−

1

ea(t, t0)

]

=
1

aea(t, t0)
,

so
|z(t)− y(t)| ≤

ε

|a|
, ∀t ∈ [t0,∞)

and the equation 2.1 is Ulam-Hyers stable.

Remark 2.10. If T = R and a > 0, or T = Z and a > 1 this situation occurs.

Remark 2.11. If we consider the inhomogeneous equation y∆ = ay + f and
the perturbed equation z∆ = az + f + h, the difference of the solutions is not
depending on f, so the Ulam-Hyers stability automatically is transferred to the
inhomogeneous equation.
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Proof of the theorem 2.6. If y is a solution of the equation

y∆(n) −

n
∑

k=1

aky
∆(k) = h(t)

and λn is a root of the corresponding characteristic equation, then the func-
tion z = y′ − λn · y is satisfying an (n − 1)th order inhomogeneous equation
with constant coefficients for which the roots of the characteristic equations are
λ1, . . . , λn−1 and the inhomogeneity is the same. Hence by an inductive argu-
ment there exists a solution y1 of the corresponding homogeneous equation and
a constant c1, such that |z(t)− y1(t)| < c1 · ε, ∀t ∈ [t0,∞). Applying Theorem
2.5 for the inhomogeneous equation y′ −λny = y1, we deduce the existence of a
function y2 with the properties y∆2 = λny2+y1 and |y−y2| < c2·c1ε, ∀t ∈ [t0,∞).
But y1 being the solution of the (n − 1)th order equation y2 is the solution of
the initial nth order equation, so we have the Ulam-Hyers stability of the initial
equation.

3. Ulam-Hyers stability of some integral equations

In this section we study the Ulam-Hyers stability of the integral equation

u(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2+

∫ t1

a1

b(s1, t2)u(s1, t2)∆1s1,

(3.1)
and of the more general equation

u(t) = w(t) +

∫ t

a

a1(s1)u(s1)∆s1+

+

∫ t

a

∫ s1

a

a2(s2)u(s2)∆s2∆s1 + · · ·+

∫ t

a

∫ s1

a

. . .

∫ sn−1

a

an(sn)u(sn)∆sn . . .∆s1.

Equations of this types appear when we transform higher order dynamic
equations to fixed point problems, hence the Ulam-Hyers stability of these
equations also provides information on the Ulam-Hyers stability of the dynamic
equations. The main difference consists in the fact that using integral equations,
the Ulam-Hyers stability is obtained in a well chosen metric space, neither the
conditions, nor the conclusions of these theorems are not the same as in the
classical framework (the closeness of the approximative solution and the exact
solution is not measured in the classical sense).

3.1. Preliminary results

We use some definitions and results from the recent article [2]. We operate
with the extended metric from [2], which is defined for functions with several
variables based on the work of C.C. Tisdell and A. Zaidi in [37]. This is needed

10



in order to prove that our operators are Picard operators, (more precisely con-
tractions) in some well chosen metric space. Suppose that T1,T2 are timescales,
α, β > 0 are real constants and define

‖ · ‖α,β : C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn) → R+ (3.2)

‖u‖α,β = sup
s1∈[a1,σ1(b1)]T1
s2∈[a2,σ2(b2)]T2

‖u(s1, s2)‖

eα(s1, a1) · eβ(s2, a2)
(3.3)

for all u ∈ C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn) and

dα,β : C([a1, σ1(b1)]T1
×[a2, σ2(b2)]T2

,Rn)×C([a1, σ1(b1)]T1
×[a2, σ2(b2)]T2

,Rn)) → R+

(3.4)
by

dα,β(u, v) = ‖u− v‖α,β , (3.5)

for all u, v ∈ C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn).

Lemma 3.1 ([2]). If α, β > 0, and σ1(b1) < ∞, σ2(b2) < ∞, we have the
following properties:

1. dα,β is a metric on C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn);

2. C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn) is a complete metric space with dα,β ;

3. ‖·‖α,β is a norm on C([a1, σ1(b1)]T1
×[a2, σ2(b2)]T2

,Rn) and it is equivalent
to ‖ · ‖0,0.

4. C([a1, σ1(b1)]T1
× [a2, σ2(b2)]T2

,Rn, ‖ · ‖α,β) is a Banach space.

For the simplicity of notation in what follows we use the following nota-
tions: X := C([a1, σ1(b1)]T1

× [a2, σ2(b2)]T2
,R), D1 := [a1, σ1(b1)]T1

, D2 :=
[a2, σ2(b2)]T2

.
Using this Bielecki type (or ”TZ”) metric, we prove the following properties:

Theorem 3.2. If w, a, b ∈ X, σ1(b1) < ∞, σ2(b2) < ∞, the operator A : X → X
defined by

A(u)(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2+

∫ t1

a1

b(s1, t2)u(s1, t2)∆1s1,

(3.6)
is well defined and there exist α, β > 0 such that A is a contraction on (X, dα,β).

Proof. We denote by

M1 := max
{

|a(t1, t2)|
∣

∣(t1, t2) ∈ D1 ×D2

}

and

M2 := max
{

|b(t1, t2)|
∣

∣(t1, t2) ∈ D1 ×D2

}

.

Due to the given conditions this constants exist and also M1 < ∞ and M2 < ∞
as well. For u, v ∈ X we have
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|A(u)(t1, t2)−A(v)(t1, t2)| ≤

∫ t1

a1

∫ t2

a2

|a(s1, s2)||u(s1, s2)− v(s1, s2)|∆1s1∆2s2+

+

∫ t1

a1

|b(s1, t2)||u(s1, t2)− v(s1, t2)|∆1s1

≤M1

∫ t1

a1

∫ t2

a2

|u(s1, s2)− v(s1, s2)|

eα(s1, a1)eβ(s2, a2)
eα(s1, a1)eβ(s2, a2)∆1s1∆2s2

+M2

∫ t1

a1

|u(s1, t2)− v(s1, t2)|

eα(s1, a1)eβ(t2, a2)
eα(s1, a1)eβ(t2, a2)∆1s1

≤M1‖u− v‖α,β

∫ t1

a1

∫ t2

a2

eα(s1, a1)eβ(s2, a2)∆1s1∆2s2

+M2‖u− v‖α,β

∫ t1

a1

eα(s1, a1)eβ(t2, a2)∆1s1

=M1‖u− v‖α,β
(eα(t1, a1)− 1) (eβ(t2, a2)− 1)

αβ
+M2‖u− v‖α,β

eα(t1, a1)− 1

α
eβ(t2, a2)

≤M1‖u− v‖α,β
eα(t1, a1)eβ(t2, a2)

αβ
+M2‖u− v‖α,β

eα(t1, a1)

α
eβ(t2, a2)

If we divide our inequality by the positive term eα(t1, a1)eβ(t2, a2), we obtain

|A(u)(t1, t2)−A(v)(t1, t2)|

eα(t1, a1)eβ(t2, a2)
≤
M1

αβ
‖u− v‖α,β +

M2

α
‖u− v‖α,β

=
M1 +M2β

αβ
‖u− v‖α,β.

Taking the supremum over (t1, t2) ∈ D1 ×D2, this inequality implies

‖A(u)−A(v)‖α,β ≤
M1 + βM2

αβ
‖u− v‖α,β , (3.7)

so A is a contraction on (X, dα,β), if αβ > M1 + βM2.

3.2. Main results

Using the main lemma from [32]:

Lemma 3.3. Let (X, d) be a Banach space. If an operator A : X → X is a
contraction with the positive constant q < 1, then A is c-weakly Picard operator
with the positive constant cA = 1

1−q
. Moreover the fixed point equation (1.1) is

Ulam-Hyers stable.

we obtain the following result:
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Theorem 3.4. Let w, a, b ∈ X, σ1(b1) < ∞, σ2(b2) < ∞. Then the integral
equation

u(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2+

∫ t1

a1

b(s1, t2)u(s1, t2)∆1s1,

(3.8)
is Ulam-Hyers stable on D1 ×D2.

Proof. Using the notations from the proof of Theorem 3.2, we have M1 < ∞
and M2 < ∞, so the operator defined as

A(u)(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2+

∫ t1

a1

b(s1, t2)u(s1, t2)∆1s1,

(3.9)
is a contraction with the positive constant q := M1+βM2

αβ
, if we choose α, β such

that q < 1. From the Lemma 3.3 we deduce that our operator A is a c-weakly
PO with the positive constant cA = αβ

αβ−M1−βM2

and from Theorem 1.18 we

obtain the Ulam-Hyers stability of the equation (3.8).

Using a similar argument we obtain the Ulam-Hyers stability of a more
general integral equation.

Theorem 3.5. Let w, a, b ∈ X, σ1(b1) < ∞, σ2(b2) < ∞. Further let be the
functions f, g ∈ C(D1 ×D2 × R,R) with a Lipschitz property in their last vari-
ables. Then the integral equation

u(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)f(s1, s2, u(s1, s2))∆1s1∆2s2

+

∫ t1

a1

b(s1, t2)g(s1, t2, u(s1, t2))∆1s1,

is Ulam-Hyers stable on D1 ×D2.

As a consequence we give the following results for second order dynamic
equations with constant coefficients.

Theorem 3.6. For the real constants c1 and c2 we consider the second-order
linear dynamic equation

x∆∆(t) + c1x
∆(t) + c2x(t) = 0, (3.10)

on a time scale interval [a, b]T. This equation is always Ulam-Hyers stable on
[a, b]T.

Proof. We integrate the equation (3.10) from a to t and we have:

x∆(t)− x∆(a) + c1(x(t) − x(a)) + c2

∫ t

a

x(s)∆s = 0.
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Now we integrate once again this equation from a to t, and renaming the vari-
ables we get:

x(t) =x(a)−
(

x∆(a) + c1x(a)
)

a+
(

x∆(a) + c1x(a)
)

t−

− c2

∫ t

a

∫ s

a

x(ξ)∆ξ∆s − c1

∫ t

a

x(s)∆s

Using the function w(t) := x(a) −
(

x∆(a) + c1x(a)
)

a +
(

x∆(a) + c1x(a)
)

t,
we define the operator on C[a, b]T

A(x)(t) = w(t) − c2

∫ t

a

∫ s

a

x(ξ)∆ξ∆s − c1

∫ t

a

x(s)∆s. (3.11)

Equation 3.10 is equivalent to the equation Ax = x, so theorem 3.4 can be
applied to obtain the Ulam-Hyers stability of the fixed point equation derived
from A. Due to the equivalent transformations of (3.10), the boundedness of
the interval and the boundedness of the exponential functions we also have the
Ulam-Hyers stability of the dynamical equation 3.10.

Theorem 3.7. Let p, q, f ∈ Crd[a, b]T and consider the following second-order
inhomogeneous delta dynamic equation with variable coefficients:

x∆∆(t) + p(t)x∆(t) + q(t)x(t) = f(t), t ∈ [a, b]T. (3.12)

If p is ∆ differentiable and p = pσ on its domain, then the dynamic equation
(3.12) is Ulam-Hyers stable.

Proof. We use the same idea as in the proof of Theorem 3.6, what is, we want
to construct an integral operator and we prove that it is c-weakly PO.

So we integrate 3.12 from a to t:

x∆(t)− x∆(a) +

∫ t

a

p(s)x∆(s)∆s+

∫ t

a

q(s)x(s)∆s =

∫ t

a

f(s)∆s.

Furthermore with partial integration using that p = pσ we have:

x∆(t)−x∆(a)+p(t)x(t)−p(a)x(a)−

∫ t

a

p∆(s)x(s)∆s+

∫ t

a

q(s)x(s)∆s =

∫ t

a

f(s)∆s.

Integrating once more from a to t and arrange the terms we get:

x(t) =x(a) +
(

x∆(a) + p(a)x(a)
)

(t− a) +

∫ t

a

∫ s

a

f(ξ)∆ξ∆s

+

∫ t

a

∫ s

a

(

p∆(ξ)− q(ξ)
)

x(ξ)∆ξ∆s −

∫ t

a

p(s)x(s)∆s

So with w(t) := x(a)+
(

x∆(a) + p(a)x(a)
)

(t−a)+
∫ t

a

∫ s

a
f(ξ)∆ξ∆s we define

the operator A on C[a, b]T as it follows:

A(x)(t) := w(t) +

∫ t

a

∫ s

a

(

p∆(ξ)− q(ξ)
)

x(ξ)∆ξ∆s −

∫ t

a

p(s)x(s)∆s.
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By applying Theorem 3.4 we obtain the Ulam-Hyers stability of the fixed point
equation generated by A. Due to the boundedness of the interval and of the
exponential functions we also obtain the Ulam-Hyers stability of the equation
(3.12).

Remark 3.8. Theorem 3.6 and Theorem 3.7 can be obtained also without using
Theorem 3.4 by using directly 3.3 and a metric space with functions having only
one variable (see the proof of Theorem 3.9). These results are more general than
Theorem 1.5. in [1].

Theorem 3.6 and Theorem 3.7 can also be generalized in order to imply the
Ulam-Hyers stability of linear delta dynamic equations of order n.

Theorem 3.9. Let w, a1, a2, . . . , an ∈ C[a, σ(b)]T, σ(b) < ∞. Then the integral
equation

u(t) = w(t) +

∫ t

a

a1(s1)u(s1)∆s1 +

∫ t

a

∫ s1

a

a2(s2)u(s2)∆s2∆s1

+ · · ·+

∫ t

a

∫ s1

a

. . .

∫ sn−1

a

an(sn)u(sn)∆sn . . .∆s1,

is Ulam-Hyers stable on [a, σ(b)]T.

Proof. In the proof we use the same idea as in the proof of the Theorem 3.4,
based on a one dimensional Bielecki type metric and norm in order to prove the
contractive property of the defined operator. Let us define the integral operator
A : C[a, σ(b)]T → C[a, σ(b)]T, by

A(u)(t) = w(t) +

∫ t

a

a1(s1)u(s1)∆s1 +

∫ t

a

∫ s1

a

a2(s2)u(s2)∆s2∆s1

+ · · ·+

∫ t

a

∫ s1

a

. . .

∫ sn−1

a

an(sn)u(sn)∆sn . . .∆s1,

The functions a1, a2, . . . , an ∈ C[a, σ(b)]T, so there exist positive real constants
M1 < ∞, . . . ,Mn < ∞ such that |a1(t)| < M1, . . . , |an(t)| < Mn, for all t ∈
[a, σ(b)]T. If u, v ∈ C[a, σ(b)]T, we have

|A(u)(t) −A(v)(t)| ≤M1

∫ t

a

|u(s1)− v(s1)|∆s1+

+M2

∫ t

a

∫ s1

a

|u(s2)− v(s2)|∆s2∆s1 + · · ·+

+Mn

∫ t

a

∫ s1

a

. . .

∫ sn−1

a

|u(sn)− v(sn)|∆sn . . .∆s1.

≤ M1||u− v||α
eα(t, a)

α
+M2||u − v||α

eα(t, a)

α2
+ · · ·+Mn||u− v||α

eα(t, a)

αn
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= ||u − v||αeα(t, a)

(

M1

α
+

M2

α2
+ · · ·+

Mn

αn

)

.

Now we divide the inequality by the positive function eα(t, a) and taking the
supremum over t ∈ [a, σ(b)]T we have

||A(u)−A(v)||α ≤ ||u− v||α

(

M1

α
+

M2

α2
+ · · ·+

Mn

αn

)

(3.13)

Let M := max{M1,M2, . . . ,Mn} and so we get

||A(u)−A(v)||α ≤ ||u− v||αM
1

α

1− 1
αn

1− 1
α

≤ ||u− v||α
M

α− 1
. (3.14)

If M
α−1 < 1, the operator A is a contraction, and due to Lemma 3.3 we have the

c-weakly PO property of A. Moreover we also obtain the Ulam-Hyers stability
of the integral equation and this implies the Ulam-Hyers stability of the nth

order dynamic equation with constant coefficients (because of the boundedness
of the interval and of the exponential function ea(t, a)).

We can generalize the Theorem 3.9 in the following way:

Theorem 3.10. Let T1,T2, . . . ,Tn be arbitrary time scales and [a1, σ1(b1)]T1
∈

T1, . . . , [an, σn(bn)]Tn
∈ Tn time scale intervals such that σ1(b1) < ∞, . . . , σn(bn) <

∞. Denote Y := C([a1, σ1(b1)]T1
× · · · × [an, σn(bn)]Tn

,R).
If w, f1, . . . , fn ∈ Y, the operator A : Y → Y defined by

A(u)(t1, . . . , tn) = w(t1, . . . , tn) +

∫ t1

a1

f1(s1, t2, . . . , tn)u(s1, t2, . . . , tn)∆1s1+

+

∫ t1

a1

∫ t2

a2

f2(s1, s2, t3, . . . , tn)u(s1, s2, t3, . . . , tn)∆2s2∆1s1 + · · ·+

+

∫ t1

a1

∫ t2

a2

. . .

∫ tn

an

fn(s1, . . . , sn)u(s1, . . . , sn)∆nsn . . .∆1s1

is a c-weakly PO, moreover the fixed point equation u = A(u) is Ulam-Hyers
stable on D1 × · · · ×Dn, where Di = [ai, σi(bi)]Ti

, i = 1, . . . , n.

The proof of this theorem uses a similar argument as the proof of Theorem
3.6 and is based on the norm

‖u‖α1,...,αn
= sup

s1∈D1,...,sn∈Dn

‖u(s1, . . . , sn)‖

eα1
(s1, a1) . . . eαn

(sn, an)
(3.15)

for all u ∈ Y. For this reason we omit the details.
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3.3. Ulam-Hyers stability of linear delta dynamic systems

Here we study the Ulam-Hyers stability of linear delta dynamic systems

u∆(t) = K(t)u(t) + F (t), (3.16)

where u(t) = (u1(t), . . . , un(t))
T
, with u1, . . . , un : D → R, K(t) = (kij(t))i,j=1,...,n

is a matrix of dimensions n × n, u∆(t) =
(

u∆
1 (t), . . . , u

∆
n (t)

)T
, f1, . . . , fn :

D → R and F (t) = (f1(t), . . . , fn(t))
T
, on an arbitrary time scale interval

D := [a, σ(b)]T. We use the one dimensional version of the Bielecki type
metric (3.4) for the function space C(D,Rn). With this metric dα the space
X = (C(D,Rn), dα) is a Banach space.

Theorem 3.11. If the functions kij , fi ∈ Crd(D,R), ∀i, j = 1, . . . , n, then the
equation (3.16) is Ulam-Hyers stable on D.

Proof. Without loss of generality we can assume, that u(a) = 0. Integrating the
equation (3.16) from a to t we have

u(t) =

∫ t

a

K(s)u(s)∆s+

∫ t

a

F (s)∆s. (3.17)

If we define the operator A : C(D,Rn) → C(D,Rn) by

A(u)(t) :=

∫ t

a

F (s)∆s+

∫ t

a

K(s)u(s)∆s, (3.18)

we need to prove, that there exists a positive constant α such that A is a
contraction on X. kij ∈ Crd(D,Rn) implies that there exists a positive constant
M < ∞, such that ||K(t)|| ≤ M, ∀t ∈ D, where || · || is a matrix norm. If
u, v ∈ C(D,Rn), we have

||A(u)(t)−A(v)(t)|| ≤

∫ t

a

||K(s)(u(s)− v(s))||∆s ≤

∫ t

a

||K(s)||||u(s)− v(s)||∆s

≤ M

∫ t

a

||u(s)− v(s)||

eα(s, a)
eα(s, a)∆s

≤
M

α
||u− v||αeα(t, a)

Dividing the inequality by the positive function eα(t, a), and taking the supre-
mum over t ∈ D we have

||A(u)−A(v)||α ≤
M

α
||u− v||α.

If M
α

< 1, the operator A is a contraction, so by the Lemma 3.3 and Theorem
1.18 we deduce the Ulam-Hyers stability of the fixed point equation u = A(u).
Due to the equivalent transformations, and the boundedness of the interval we
also have the Ulam-Hyers stability of the equation (3.16).
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Remark 3.12. The previous results show that on a bounded intervals the Ulam-
Hyers stability can be proved using a unified approach. On the other hand
these results may not be relevant on some timescales (such as Z). The theory
of Picard operator can also be applied on unbounded intervals, where the gen-
erated function spaces are gauge spaces, but in generally we can establish only
generalized Ulam-Hyers-Rassias stability and this is not the aim of this paper.
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