Math 164-1: Optimization – Homework 2 Due: October 9, 2015

Exercise 1. Exercises 6.2, 6.3 and 6.4 from the book of Chong and Zak.

(i) (Exercise 6.2) Find the minimizers and maximizers of the function $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x_1, x_2) = \frac{1}{3}x_1^3 - 4x_1 + \frac{1}{3}x_2^2 - 16x_2.$$

- (ii) (Exercise 6.3) Let $\Omega \subseteq \mathbb{R}^d$ and $f: \Omega \to \mathbb{R}$. Show that if x^* is a global minimizer of f over Ω and if $x^* \in \Omega' \subset \Omega$, then x^* is a global minimizer of f over Ω' .
- (iii) (Exercise 6.4) Let $\Omega, \Omega' \subseteq \mathbb{R}^d$ and $f: \Omega' \to \mathbb{R}$. Suppose that x^* is a local minimizer of f over Ω and $\Omega \subset \Omega'$. Show that if x^* is an interior point of Ω , then x^* is a local minimizer of f over Ω' . Show that the same conclusion cannot be made if x^* is not an interior point on Ω .

Hint: for the second part construct an example in 1D for instance.

Exercise 2. Exercises 6.8 and 6.9 from the book of Chong and Zak.

(i) (Exercise 6.8) Let $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x) = x^T \begin{bmatrix} 1 & 2\\ 4 & 7 \end{bmatrix} x + x^T \begin{bmatrix} 3\\ 5 \end{bmatrix} x + 6.$$

- (a) Find the gradient and the Hessian of f at the point $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$.
- (b) Find the directional derivative of f at $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ w.r.t. a unit vector in the direction of maximal rate of increase.
- (c) Find a(n interior) point that satisfies the first order necessary optimality condition (for a local minimizer) of f. Does this point satisfy the second order necessary optimality condition?
- (ii) (Exercise 6.9) Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1.$$

- (a) In what direction does the function f decrease most rapidly at the point $x^0 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$?
- (b) What is the rate of increase of f at the point x^0 in the direction of maximum decrease of f?
- (a) Find the rate of increase of f at the point x^0 in the direction $d = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$.

Exercise 3. Exercises 6.18 and 6.24 from the book of Chong and Zak.

(i) (Exercise 6.18) Suppose that we are given $n \ge 1$ real numbers x_1, \ldots, x_n . Find the number $\bar{x} \in \mathbb{R}$ (if it exists) such that the sum of the squared difference between \bar{x} and the numbers above is minimized. In other words, solve

$$\min_{\bar{x}\in\mathbb{R}}\sum_{i=1}^{n}(\bar{x}-x_i)^2.$$

(ii) (Exercise 6.24) Show that if $d \in \mathbb{R}^n$ is a feasible direction at point $x \in \Omega \subseteq \mathbb{R}^n$, then for all $\beta > 0$ βd is also a feasible direction at x.

Exercise 4. Exercises 6.11 and 6.12 from the book of Chong and Zak.

- (i) (Exercise 6.11) Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x_1, x_2) = -x_2^2$. Let us consider the minimization problem $\min_{x \in \Omega} f(x)$, where $\Omega := \{x \in \mathbb{R}^2 : |x_2| \le x_1^2, x_1 \ge 0\}$.
 - (b) Does the point $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$ satisfy the first order necessary condition for a local minimizer? In other words, is it true that $d \cdot \nabla f(0,0) \ge 0$ for all feasible directions d at $\begin{bmatrix} 0 & 0 \end{bmatrix}$?
 - (c) Is the point $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$ local/strict local minimizer, a local/strict local maximizer or none of the above?
- (ii) (Exercise 6.12) Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = 5x_2$ and let $\Omega = \{x \in \mathbb{R}^2 : x_1^2 + x_2 \ge 1\}$ and let us consider the problem

 $\min_{x \in \Omega} f(x).$

- (a) Does the point $x^* := \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ satisfy the first order necessary condition?
- (a) Does the point $x^* := \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ satisfy the second order necessary condition?
- (a) Is the point $x^* := \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ a local minimizer?