Math 164-1: Optimization – Homework 3

Due: October 16, 2015

Exercise 1. Exercises 6.13, 6.14 and 6.26 from the book of Chong and Zak.

(i) (Exercise 6.13) Consider the problem

 $\min_{x \in \Omega} f(x),$

where $f : \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x) = -3x_1$ with $x = [x_1, x_2]^T$, and $\Omega = \{x = [x_1, x_2]^T : x_1 + x_2^2 \le 2\}$. Answer each of the following questions, showing complete justification.

- a. Does the point $x^* = [2, 0]^T$ satisfy the first-order necessary condition?
- b. Does the point $x^* = [2, 0]^T$ satisfy the second-order necessary condition?
- c. Is the point $x^* = [2, 0]^T$ a local minimizer?
- (ii) (Exercise 6.14) Consider the problem

$$\min_{x \in \Omega} f(x),$$

where $\Omega = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 1\}$ and $f(x) = x_2$.

- (a) Find all point(s) satisfying the first order optimality condition.
- (b) Which of the point(s) in part (a) satisfy the second order optimality condition?
- (c) Which of the point(s) in part (a) are local minimizers?
- (iii) (Exercise 6.26) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a $C^1(\mathbb{R}^2)$ function. Consider the problem

$$\min_{x_1, x_2 \ge 0} f(x),$$

where $x = [x_1, x_2]^T$. Suppose that $\nabla f(0) \neq 0$, and

$$\frac{\partial f}{\partial x_1}(0) \le 0, \frac{\partial f}{\partial x_2}(0) \le 0.$$

Show that 0 cannot be a minimizer for this problem.

Exercise 2. Exercises 7.1 and 7.4 from the book of Chong and Zak.

- (i) (Exercise 7.1) Suppose that we have a unimodal function over the interval [5,8]. Give an example of a desired final uncertainty range where the golden section method requires at least four iterations, whereas the Fibonacci method requires only three. You may choose an arbitrarily small value of ε for the Fibonacci method.
- (ii) (Exercise 7.4) Suppose that ρ_1, \ldots, ρ_N are the values used in the Fibonacci search method. Show that for each $k = 1, \ldots, N, 0 \le \rho_k \le 1/2$, and for each $k = 1, \ldots, N-1$,

$$\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}.$$

Exercise 3. Exercises 7.2 from the book of Chong and Zak.

(i) (Exercise 7.2) Let $f(x) = x^2 + 4\cos x$, $x \in \mathbb{R}$. We wish to find the minimizer x^* of f over the interval [1, 2]. (*Calculator users:* Note that in $\cos x$, the argument x is in radians.)

- (a) Plot f(x) versus x over the interval [1, 2].
- (b) Use the golden section method to locate x^* to within an uncertainty of 0.2. Display all intermediate steps using a table:

Iteration k	a_k	b_k	$f(a_k)$	$f(b_k)$	New uncertainty interval
1	?	?	?	?	[?,?]
2	?	?	?	?	[?, ?]
÷	÷	÷	÷	÷	÷

(c) Repeat part b. using the Fibonacci method, with $\varepsilon=0.05.$ Display all intermediate steps using a table:

Iteration k	ρ_k	a_k	b_k	$f(a_k)$	$f(b_k)$	New uncertainty interval
1	?	?	?	?	?	[?, ?]
2	?	?	?	?	?	[?, ?]
:	:	:	:	:	:	:
•	•	•	•	•	•	•

(d) Apply Newton's method, using the same number of iterations as in part (b), with $x^{(0)} = 1$.

Exercise 4. Exercises 7.5 and 7.6 from the book of Chong and Zak.

(i) (Exercise 7.5) Show that if F_0, F_1, \ldots is the Fibonacci sequence, then for each $k = 2, 3, \ldots$,

$$F_{k-2}F_{k+1} - F_{k-1}F_k = (-1)^k.$$

(ii) (Exercise 7.6) Show that the Fibonacci sequence can be calculated using the formula

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right).$$