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Exercise 1 (7 points).

(1) Let us consider the function f : R2 → R defined as

f(x1, x2) = sin(x1) cos(x2).

Find all the local minimizers and maximizers of f on the set S = {(x1, x2) ∈ R2 : x2 − cos(x1) =
0 and x2 − sin(x1) = 0}. Find the global minimizers and maximizers of f on S as well. Are they
unique? Justify your answer!

Hint: it is easier to begin describing the geometry of S and solve the problem without Lagrange multi-
pliers.

(2) Let Ω := {(x1, x2) ∈ R2 : x1 ∈ [π/4, 5π/4] and cos(x1) ≤ x2 ≤ sin(x1)}. Consider moreover
g : R2 → R defined as

g(x1, x2) = 1− x22.

Find the global minimizers and maximizers of g on Ω. Are they unique? Justify your answers!

Hint: it is more complicated to use the KKT techniques, than to use Lagrange multipliers (+ dealing
separately with the interior case). Nevertheless, first understand the geometry of Ω and the structure of
g.

Solutions
(1) The feasible set S geometrically represents the points in the intersection of the graphs of sin and

cos defined on the whole R. Hence it is easy to write S as

S =

{(
π

4
+ 2kπ,

√
2

2

)
: k ∈ Z

}
∪

{(
5π

4
+ 2kπ,−

√
2

2

)
: k ∈ Z

}
.

So, to find the extremizers of f on S, one has to evaluate it in the discrete points of S. Clearly,

f(π/4 + 2kπ,
√

2/2) =
√

2/2 cos(
√

2/2) > 0

and
f(5π/4 + 2kπ,−

√
2/2) = −

√
2/2 cos(−

√
2/2) = −

√
2/2 cos(

√
2/2) < 0,

for all k ∈ Z. This shows that all the points
{(

π
4 + 2kπ,

√
2
2

)
: k ∈ Z

}
are global maximizers (hence there

is no uniqueness), while the points
{(

5π
4 + 2kπ,−

√
2
2

)
: k ∈ Z

}
are all global minimizers (hence there is

no uniqueness). This are trivially local maximizers and local minimizers, respectively.
(2) A figure helps you to see that on the interval [π/4, 5π/4] the graph of cos is below of the graph

of sin, hence Ω is just the region between these two graphs. Observe moreover that g is independent of
the first variable, hence one has to only understand in what range x2 is varying. Actually, the maximal
range is x2 ∈ [−1, 1] (the endpoint of this intervals are achieved at the points (π,−1) and (π/2, 1) of Ω).

Clearly, g(x1, x2) > g(π,−1) = g(π/2, 1) = 0, for any other (x1, x2) ∈ Ω, so these points are the
only global minimizers (uniqueness does not hold). One the other hand g(x1, x2) < g(x∗1, 0) = 1, where
x∗1 ∈ [π/2, π] and (x1, x2) is any other point from Ω. Hence (x∗1, 0) are all global maximizers (uniqueness
does not hold).

If one wants to use the Lagrangian theory instead, first the candidates for local minimizers and
maximizers from the interior of Ω are those points for which ∇g(x1, x2) = 0. This condition gives the
points (x∗1, 0), where x∗1 ∈ (π/2, π). For all these points, the value of g is 1. So these all will be global
maximizers, by definition.

The boundary consists of two pieces: x2 = sin(x1), and x2 = cos(x1), where x1 ∈ [π/4, 5π/4]. So, on
the first piece

g(x1, x2) = 1− sin2(x1) = cos2(x1),
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which has minimal value at x1 = π/2 (corresponding to the point (π/2, 1) ∈ Ω) which is 0. And it has
maximal value at x1 = π (corresponding to the point (π, 0) ∈ Ω) which is 1.

One the other piece of the boundary, one can write

g(x1, x2) = 1− cos2(x1) = sin2(x1),

which has maximal value at x1 = π/2 (corresponding to the point (π/2, 0) ∈ Ω) which is 1. And it has
minimal value at x1 = π (corresponding to the point (π,−1) ∈ Ω) which is 0.

Gluing together the information from the interior and from the boundary cases, one obtains exactly
the same solutions as with the first method.
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Exercise 2 (Aquathlon problem – 9 points).

John is doing aquathlon, which is a sport combining running and swimming. The start is situated on
the left riverside and the finish is situated on the right riverside of the same river. Hence, he needs to
run along the river on the riverside, cross the river by swimming, then possibly run further on the other
side. The sides of the river are parallel straight lines, and the width of the river is uniform everywhere,
and it is d > 0 meters. It is also allowed to immediately cross the river by swimming, or run only on the
left side and arrive to the finish by swimming. The length of each riverside (where the race takes place)
measures L = 500 meters.

We suppose that,
d <
√

3L, (width)

meaning that the river is not that wide, compared to the length of the race.
Knowing that John can run with a constant uniform speed of vr = 2 m/s, and he can swim with a

constant uniform speed of vs = 1 m/s, he wants to minimize the time that he needs for this combined
race. We also assume that he will swim along a straight line from one riverside to the other. Help John
to find an optimal strategy, i.e. tell him how far to run on the left side, then in which angle to start
swimming and then to run on the other side, in order to achieve the shortest possible time.

(1) Introducing some variables if it is necessary, write an objective function and a feasible set, where
the objective function should be minimized.

Hint: one knows that the constant speed is given by ratio of the distance travelled and the duration of
the time.

(2) Show that if there is an optimal strategy from the interior of the feasible set, then that is depending
only on the angle in which John needs to start swimming. Deduce from this the non-uniqueness of
the optimal strategy.

(3) Show that there exists an optimal strategy and describe all of them (for which distance should John
run on the left side, then in which angle needs he to start swimming) and show that these strategies
are independent of the width d of the river. Compute the corresponding optimal time as well.

(4) Explain, how the condition (width) enters into the optimization problem. What happens if this
condition is not fulfilled?

Solutions
(1) There are several (equivalent) ways to model this problem mathematically. Let us use the following

variables: denote by a ∈ [0, L] the distance traveled on the left side of the river, and by θ ∈ [0, π/2) the
angle in which John starts to swim towards to the right side. We do not include here θ = π/2 which
would mean swimming parallel to the riversides, because in that case it would be smarter to just run
(since vr > vs). It is also clear that one does not have to include swimming with negative angles, since
that would be clearly not optimal. These two variables immediately determine how much is left to run
on the right side, i.e. L− a− d tan(θ). It is clear that one should impose L− a− d tan(θ) ≥ 0, otherwise
John would arrive beyond the finish point on the right side. So this already determines the feasible set
of the problem, as

Ω := {(a, θ) ∈ [0, L]× [0, π/2) : L− a− d tan(θ) ≥ 0}.

The objective function is composed by the “three times lengths”, while running on the left side, swimming
in the river, and running on the right side, i.e. f : Ω→ R,

f(a, θ) =
a

vr
+

d

vs cos(θ)
+
L− a− d tan(θ)

vr
=
L− d tan(θ)

vr
+

d

vs cos(θ)
,

since the time is the ratio of the distance and the speed.
(2) From the second equation in the definition of f one observes immediately, that it is independent

of the variable a. So if there is an optimal strategy, meaning that John runs for a distance a on the left
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side, then swims starting with and angle θ, another optimal strategy would be to run a bit further, or
less, and start swimming with the very same angle. This basically means that the optimal strategy is
depending only on the angle in which he starts to swim. This is because his speed is the same on both
sides of the river. If that would not be the case, this invariance would not be present in the problem.

This in particular means that if there is an optimal strategy, there are infinitely many, so for sure one
does not have uniqueness.

(3) We examine now the possible candidates for the optimal strategy. Let us work first in the interior of
Ω, meaning that a ∈ (0, L), θ ∈ (0, π/2) and L−a−d tan(θ) > 0. So by FONC, any local minimizer (a, θ)
should satisfy ∇f(a, θ) = 0. Since f is independent of a, this means only ∂θf(a, θ) = 0, or equivalently

− d

vr cos2(θ)
+

d sin(θ)

vs cos2(θ)
= 0,

from where one obtains

vs = vr sin(θ), or sin(θ) =
vs
vr

=
1

2
,

which immediately implies, since θ ∈ (0, π/2), that θ = π/6. And one observes also that this strategy is
independent of the width of the river, hence that term simplified above.

Since the function is just of one variable, one can check SONC and SOSC conditions just using

∂2θθf(a, θ) = d

(
− 2 sin(θ)

vr cos3(θ)
+

1

vs cos(θ)
+

2 sin2(θ)

vs cos3(θ)

)
= d

(
− sin(θ)

cos3(θ)
+

1

cos(θ)
+

2 sin2(θ)

cos3(θ)

)
,

which implies that

∂2θθf(a, π/6) = d

(
− 4

3
√

3
+

2√
3

+
4

3
√

3

)
=

2d√
3
> 0,

so actually π/6 is a strict local minimizer of f(a, ·).
The optimal time corresponding to this strategy is

f(a, π/6) =
500− d

√
3
3

2
+

2d√
3

= 250 + d

√
3

2
.

Now it remained to examine the boundary cases. The boundary case, when a = 0 is similar, this
produces the same optimal strategy. The other type of boundary cases consist of situations, when John
arrives by swimming to the finish. This means that L−a−d tan(θ) = 0, hence he need to start swimming
at an angle that is strictly smaller than θ. Let us see how the value of the objective function changes.
Since we optimized this function independently of a on the interval θ ∈ (0, π/2), clearly the objective
function achieves its global minimizer at θ = π/6. Which means that taking angles that are smaller,
would result worse objective function value.

On the other hand having θ = π/6 will imply also that L− d tan(θ) = L− d√
3
> 0, the the condition

(width), so if that condition would be violated, the optimal strategy would not be π/6 anymore. This
answers also (4).

To summarize, thanks to the condition (width), the above determined optimal strategies exist,
moreover they can described as follows: run for an arbitrary distance a on the left side such that
0 ≤ a ≤ L − d tan(π/6), then start swimming at the angle π/6, then run further on the right side,
if you have not arrived yet to the finish.
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Exercise 3 (10 points).

Let us consider the functions fδ, gδ : R2 → R defined as

fδ(x1, x2) = 2x21 + 2x1x2 + δx22 − 2x1 − x2, and gδ(x1, x2) = 2x21 + 2x1x2 + δx22

where δ ∈ R is a given parameter. We aim to study some optimization problems involving fδ and gδ for
different values of the parameter δ.

(1) Show that for any δ > 1/2, fδ has a unique minimizer on R2. Compute this minimizer in terms of
δ. Hint: write down first and second order conditions for fδ and study when D2fδ becomes positive
definite.

(2) Write fδ as
1

2
x>Qδx − b · x, for some Qδ ∈ R2×2 and b ∈ R2 to be determined. Let δ > 1/2 and

x0 = (0 0)>, perform one iteration (compute x1) of the gradient descent algorithm for fδ with
optimal step-size initialized with x0. Compare x1 to the optimal solution computed in (1). Is x1

closer than x0?

(3) Show that g1/2 has infinitely many global minimizers, that lie on a line. Determine this line,
and show that it corresponds to the eigenspace generated by the eigenvector corresponding to the
smallest eigenvalue of D2g.

(4) Show that g0 does not have either local minimizers or local maximizers.

Solution
We first write fδ and gδ as

f(x1, x2) =
1

2
x>Qδx− b · x, and gδ =

1

2
x>Qδx,

where

Qδ =

(
4 2
2 2δ

)
and b = (2 1)>.

Observe that Qδ is a symmetric matrix.
(1) All the candidates for local minimizers should satisfy FONC, hence Qδx = b. Moreover, D2f(x) =

Qδ and let us study whether this matrix is positive definite or not. We compute its eigenvalues (λ1 and
λ2) for instance, which are roots of the equation (4− λ)(2δ − λ)− 4 = 0, or equivalently

λ2 − (4 + 2δ)λ+ 8δ − 4 = 0,

which should have real roots, because Qδ is symmetric. Indeed,

λ1,2 =
4 + 2δ ±

√
(4 + 2δ)2 − 4(8δ − 4)

2
=

4 + 2δ ± 2
√

(δ − 2)2 + 4

2
, (1)

and from the first equation one can see immediately, that if 8δ−4 > 0, i.e. δ > 1/2 then the term under the
square root is always smaller than the one in the front of it, hence both eigenvalues are positive, which
means also that Qδ is positive definite, hence invertible, so the only candidate will be a strict global
minimizer of fδ on R2. The same can we achieved using Sylvester’s criterion on the leading principal
minors. This minimizer is given by

(xδ1 xδ2)> = Q−1δ b = (1/2 0).

(2) The gradient descent algorithm with optimal step size (that can be used in our situation, since
Qδ > 0) reads as

xk+1 = xk − αk(Qδx
k − b), with αk =

‖Qδxk − b‖2

(Qδxk − b)>Qδ(Qδxk − b)
,
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provided, we did not reach yet that the optimizer with xk, hence Qδx
k 6= b. Let x0 be the zero vector.

And compute

α0 =
‖b‖2

b>Qδb
=

5

24 + 2δ
,

so

x1 =
5

24 + 2δ
(2 1)>.

The initial distance square between x0 and the optimal solution is 1/4. Now, let us compute

‖x1 − (1/2 0)>‖2 =
25

(24 + 2δ)2
+

(2 + δ)2

(24 + 2δ)2
=
δ2 + 4δ + 29

(24 + 2δ)2
,

which is clearly much more smaller than 1/4.
(3) Clearly, for δ = 1/2, using the formula (1), one sees that the eigenvalues of Q1/2 will be λ1 = 0

and λ2 = 5, hence this matrix is only positive semi-definite, which means that one cannot use for instance
SOSC to decide, whether the candidates for the minimizers of g1/2 are indeed minimizers or not.

The candidates, in this case as well have to satisfy FONC, meaning that

Q1/2x = 0.

More precisely, this means that they solve the linear system

2x1 + x2 = 0, (2)

so they lie on a line. Actually all these points satisfying the above equation are eigenvectors associated
to λ1 = 0, so this is the eigenspace associated to this eigenvalue (it is also the kernel of Q1/2.) By the
fact that Q1/2 is positive semi-definite (or by Rayleigh’s inequality), one has that

g1/2(x) = x>Q1/2x ≥ 0,

on the other hand g1/2(x1, x2) = 0, for all vectors characterized by (2), hence all these will be global
minimizers.

(4) Let us assume that (a, b) is a local extremizer of g0(x1, x2) = 2x21 + 2x1x2. Then, there should
exists a small ball around this point, in this (a, b) achieves the best value. Take an arbitrary direction
e = (e1, e2), and compute the directional derivative of the function at (a, b) this direction, that is

∂eg0(a, b) = ∇g0(a, b) · e = e1(4a+ 2b) + 2ae2.

Now suppose that a 6= 0. Then choose e1 = 0 and choosing e2 = a and e2 = −a, one finds that the
function is increasing in one of the directions and decreasing in the other, hence this point cannot be
either a local minimizer or a maximizer.

If a = 0 and b 6= 0, choose e2 arbitrary and e1 = b and e2 = −b, which gives the same contradiction.
This means that the only possibility for local extremizer is (0, 0), where all the directional derivatives

vanish, so we need to use the definition. For this, take ε 6= 0 to be a small number and compute

g0(ε, ε) = 4ε2 > 0, and g0(ε,−2ε) = −2ε2 < 0,

hence (0, 0) cannot be a local extremizer either.
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