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Exercise 1 (9 points).

Let δ ∈ R be a parameter, and consider the functions fδ, gδ : R2 → R defined as

fδ(x, y) = x2 + 2δxy + 2y2 − x+ y, and gδ(x, y) = fδ(x, y) + x− y.

(1) Show that if δ ∈ (−
√

2,
√

2), then both fδ and gδ have a unique minimizer on R2. Determine these
minimizers in terms of δ. Hint: write down first and second order optimality conditions, and study
the Hessians of fδ and gδ.

(2) Let δ =
√

2. Show that in this case g√2 has infinitely many global minimizers. Determine the

geometric location (i.e. a set S√2 := {(x, y) ∈ R2 : (x, y) is a global minimizer of g√2}) of these

global minimizers in terms of the eigenvalues/eigenvectors of D2g√2.

(3) Let α > 0. We want to approximate some of the global minimizers of g√2 using a steepest descent

(gradient descent) algorithm with fixed step size α. For any (x0, y0) ∈ R2 write down the first
iteration using this algorithm, i.e. write (x1, y1) in terms of (x0, y0) and α.

(4) Show that there is a unique α > 0 independent of the initial guess, such that using the gradient
descent algorithm from (3) with this α and any (x0, y0) /∈ S√2 initial guess, (x1, y1) determined
in (3) will lie in S√2. Compute the value of this α. Hint: use the geometric definition of S√2 and

check what condition should be satisfied for (x1, y1) in order to lie on S√2.

Solution
First let us write

fδ(X) =
1

2
X>QδX − b ·X, and gδ(X) =

1

2
X>QδX,

where we denote X = (x; y)> and

Qδ =

(
2 2δ
2δ 4

)
and b = (1 − 1)>.

Observe that Qδ is a symmetric matrix, hence all its eigenvalues are real.
(1) The candidates for the optimizers of fδ and gδ should satisfy the FONC, i.e. QδX = b, and

QδX = 0 respectively. Let us check now the second order conditions, for observe that D2fδ = D2gδ = Qδ.
Let us compute the eigenvalues λ1, λ2 of Qδ, these are the solutions of (2 − λ)(4 − λ) − 4δ2 = 0, or
equivalently λ2 − 6λ+ 8− 4δ2 = 0, from where

λ1,2 =
6±

√
36− 4(8− 4δ2)

2
,

from where is is easy to see that if 8 − 4δ2 > 0, then both eigenvalues are positive. This is exactly the
case, when δ ∈ (−

√
2,
√

2), so for this range Qδ is invertible and positive definite, hence the candidates
are unique and global minimizers. In the case of fδ, this will be(

2 + δ

2(2− δ2)
,

1 + δ

2(δ2 − 2)

)>
and in the case of gδ this is (0, 0)>.

(2) Just using the previous formula for the eigenvalues, in the case of δ =
√

2, the eigenvalues of Q√2

are λ1 = 0 and λ2 = 6, so the matrix is still positive semi-definite, however, we are not able to use the
SOSC. Still, by FONC the candidates are such that Q√2X = 0, which translates to

x+
√

2y = 0. (1)

2



On the other hand the positive semi-definiteness means that g√2(X) = 1
2X
>Q√2X ≥ 0, and g√2(X) = 0

for all X = (x, y)> such that (1) holds. This implies that all these vectors are actually global minimizers
of g√2 and the geometric location of these points is nothing else but the eigenspace associated to the
λ1 = 0 eigenvalue of Q√2, with other words, these are all eigenvectors corresponding to λ1 = 0.

(3) The definition of (x1, y1) reads as

(x1, y1)> = (x0, y0)>−α(2x0 + 2
√

2y0; 2
√

2x0 + 4y0)> = [x0−α(2x0 + 2
√

2y0); y0−α(2
√

2x0 + 4y0)]>

(4) In order to obtain that (x1, y1) is a global minimizer of g√2, it should satisfy (1), that is x1+
√

2y1 =
0. Let us write this condition in terms of α. This reads as

x0 − α(2x0 + 2
√

2y0 = −
√

2[y0 − α(2
√

2x0 + 4y0)],

which after rearranging and using that x0 +
√

2y0 6= 0, one obtains that α = 1/6. Which means that
independently of the initial guess, using this α we will always obtain a global minimizer in 1 step.
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Exercise 2 (8 points).

(1) Let us consider the function f : R2 → R defined as

f(x, y) = (x+ 1) arctan(y).

Find all the local minimizers and maximizers of f on the set S = {(x, y) ∈ R2 : x2 + 2x+ y2 − 3 =
0 and x2 − 2x + y2 − 3 = 0}. Find the global minimizers and maximizers of f on S as well. Are
they unique? Justify your answer!

Hint: it is easier to begin describing the geometry of S and solve the problem without Lagrange multi-
pliers.

(2) Let Ω := {(x, y) ∈ R2 : x2+2x+y2−3 ≤ 0 and x2−2x+y2−3 ≤ 0}. Consider moreover g : R2 → R
defined as

g(x, y) = 4x2 + y2.

Find the global minimizers and maximizers of g on Ω. Are they unique? Justify your answers!

Hint: you may use either KKT multipliers (with the first and second order conditions), or Lagrange
multipliers (with first and second order conditions; here you may need to deal separately with the interior
case). Nevertheless, first understand the geometry of Ω and the structure of g. A clever Lagrangian
approach is shorter.

Solution
(1) Actually, S is the intersection of two circles, the first one is (x+ 1)2 + y2 = 4 a circle of radius 2

around (−1, 0), and the second one is (x− 1)2 + y2 = 4 a circle of radius 2 around (1, 0). Geometrically,
one can see that these circles have two intersection points, namely X1 = (0,

√
3) and X2 = (0,−

√
3).

Hence S has only these two points, so one can just compute f(X1) = arctan(
√

3) = π/3 and f(X2) =
arctan(−

√
3) = −π/3. Thus X1 is the unique global maximizer and X2 is the unique global minimizer of

f on S. These are trivially local extemizers as well.
(2) Observe that Ω is the intersection of the two disks, for which the boundary circles were described

in (1). To select the possible candidates for local extremizers from the interior of Ω, FONC gives us that

∇f(x, y) = 0 = (8x; 2y)>,

which implies that X0 = (0, 0) is the only candidate from the interior, and the Hessian matrix of f is
always positive definite, hence X0 is a strict local minimizer.

Now let us check the two pieces of the boundary. First, for the left circle (the right piece of the
boundary), one has that y2 = 4− (x+ 1)2, with x ∈ [0, 1], hence here f becomes of one variable,

f(x, y) = 4x2 + 4− (x+ 1)2 = 3x2 − 2x+ 3

and x ∈ [0, 1]. This function is clearly decreasing on [0, 1/3] increasing on [1/3, 1], hence its minimizer
is x = 1/3, corresponding to the points X1 = (1/3,−2

√
5/3) and X2 = (1/3, 2

√
5/3) where the function

values are the same 8/3. The local maximum points on this piece of the boundary are x = 0, which
corresponds to the points X3 = (0,−

√
3) and X4 = (0,

√
3) where the function values are 3, and x = 1

which corresponds to the point X5 = (1, 0) with function value 4.
One can represent similarly the left piece of the boundary, corresponding to the circle with center at

(1, 0). Here y2 = 4− (x− 1)2 with x ∈ [−1, 0] and similarly, f will depend only on one variable,

f(x, y) = 4x2 + 4− (x− 1)2 = 3x2 + 2x+ 3

and x ∈ [−1, 0]. This function is clearly decreasing on [−1,−1/3] and increasing on [−1/3, 0], hence its
minimizer is x = −1/3, corresponding to the points X6 = (−1/3,−2

√
5/3) and X7 = (−1/3, 2

√
5/3)

where the function values are the same 8/3. The local maximum points on this piece of the boundary
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are x = 0, which corresponds to the points X8 = (0,−
√

3) and X9 = (0,
√

3) where the function values
are 3, and x = −1 which corresponds to the point X10 = (−1, 0) with function value 4.

So collecting all the information from the interior and from the boundary, we could find the global
extremizers only from the selected candidates. Comparing the function values at the different candidates,
the unique global minimizer is X0 = (0, 0) with function value 0, and one has two global maximizers at
X5 = (1, 0) and X10 = (−1, 0) with function value 4.

To solve the problem using the techniques of KKT multipliers, denote the two inequality constraints
by h+(x, y) ≤ 0 and h−(x, y) ≤ 0, where h+, h− : R2 → R are defined as

h± = x2 ± 2x+ y2 − 3.

We need to do two major cases, when we either minimize or maximize the function.
CASE 1 - Minimization
Actually this case can be “neglected”, because we are interested in global optimizers. One can observe

easily that g(x, y) ≥ 0 and g(x, y) = 0 if and only if (x, y) = (0, 0). Since (0, 0) is an interior point of Ω,
this will be the unique global minimizer.

But if you would like to do the KKT theory, you will see below that the only possible case will be
(0, 0) anyway.

The KKT FONC condition tells us that there exist µ+, µ− ≥ 0 such that at a local minimizer

∇f(x, y) + µ+∇h+(x, y) + µ−∇h−(x, y) = 0,

µ+h+(x, y) + µ−h−(x, y) = 0.

This can be written as the system

8x+ µ+(2x+ 2) + µ−(2x− 2) = 0,

2y + 2yµ+ + 2yµ− = 0,

µ+(x2 + 2x+ y2 − 3) + µ−(x2 − 2x+ y2 − 3) = 0.

Clearly, in the case when µ± = 0 one has that X0 = (0, 0), which corresponds to the interior case,
where we already checked that it is a strict local minimizer.

Now, as Case 2 set µ+ = 0 and µ− > 0 which implies that x2− 2x+ y2− 3 = 0, and from equation 2,
one has that y = 0. From these two, one obtains that x = −1 or x = 3. The first one would imply that
µ− = −2, which is not possible, and the second one µ− = −6 which is not possible either.

As Case 3 set µ+ > 0 and µ− = 0 which implies that x2 + 2x+ y2 − 3 = 0, and from equation 2, one
has that y = 0. These two imply that either x = −3 or x = 1. The first one would imply µ+ = −6, which
is not possible, and the second one µ+ = −2 which is not possible either.

As Case 4 set µ+ > 0 and µ− > 0 which implies that x2 + 2x+ y2 − 3 = 0 and x2 + 2x+ y2 − 3 = 0
which selects the candidates (0,±

√
3). In both cases, one could divide the second equation by 2y, which

would imply that µ+ + µ− = −1 which is impossible, since there are two positive number.
So from here one obtains that the only possibility is X0 = (0, 0), which is clearly a strict global

minimizer, hence it is unique.

CASE 2 - Maximization
In this case one has to change f to −f and perform similar analysis as before.
The KKT FONC condition tells us that there exist µ+, µ− ≥ 0 such that at a local minimizer

−∇f(x, y) + µ+∇h+(x, y) + µ−∇h−(x, y) = 0,

µ+h+(x, y) + µ−h−(x, y) = 0.

This can be written as the system

− 8x+ µ+(2x+ 2) + µ−(2x− 2) = 0,

− 2y + 2yµ+ + 2yµ− = 0,

µ+(x2 + 2x+ y2 − 3) + µ−(x2 − 2x+ y2 − 3) = 0.
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Clearly, in the case when µ± = 0 one has that X0 = (0, 0), which corresponds to the interior case,
where we already checked that it is a strict local minimizer, so this cannot be maximizer.

Now, as Case 2 set µ+ = 0 and µ− > 0 which implies that x2− 2x+ y2− 3 = 0, and from equation 2,
one has that either y = 0, or µ− = 1. From the first, one obtains that x = −1 or x = 3 (but this is not
possible because it is not a feasible point). The first one would imply that µ− = 2. The second subcase
was µ− = 1, which would result to x = −1/3, and hence y = ±2

√
5/3

So we can collect the candidates with the corresponding multipliers as follows

1. x = −1, y = 0, µ+ = 0, µ− = 2,

2. x = −1/3, y = ±2
√

5/3, µ+ = 0, µ− = 1,

As Case 3 set µ+ > 0 and µ− = 0 which implies that x2 + 2x+ y2 − 3 = 0, and from equation 2, one
has that either y = 0 or µ+ = 1. The first implies that either x = −3 (which is not feasible) or x = 1.
So x = 1 implies that µ+ = 2. And the second subcase was that µ+ = 1 which implies that x = 1/3 and
hence y = ±2

√
5/3. So we can collect the candidates with the corresponding multipliers as follows

3. x = 1, y = 0, µ+ = 2, µ− = 0,

4. x = 1/3, y = ±2
√

5/3, µ+ = 1, µ− = 0,

As Case 4 set µ+ > 0 and µ− > 0 which implies that x2 + 2x+ y2 − 3 = 0 and x2 + 2x+ y2 − 3 = 0
which selects the candidates (0,±

√
3). In both cases, one could divide the second equation by 2y, which

would imply that µ+ + µ− = 1. Using the first equation one obtains that µ+ − µ− = 0 so one has the
multipliers µ+ = 1/2 = µ−. This gives the last class of candidates as

5. x = 0, y = ±
√

3, µ+ = 1/2, µ− = 1/2.

Now one has to derive the second order conditions to see whether the candidates are local maximizers
of not. The Hessian matrices are independent of the point, so we introduce

L(µ+, µ−) :=

(
−8 0
0 −2

)
+ (µ+ + µ−)

(
2 0
0 2

)
To check the second order conditions, we do here only the subcase 1. The others are similar. One needs
to compute the tangent space for SONC and the modified one for SOSC, which will be the same, since
the h− constraint is active only with positive multiplier. Geometrically, it is clear that this space is the
y-axis (i.e. x = 0). Or, since ∇h−(−1, 0) = (−4, 0)>, from where you can also deduce this. Now

L(0, 2) :=

(
−4 0
0 2

)
,

which tested against vectors of the form (0, y) will give you 2y2 > 0, whenever y 6= 0, so (−1, 0) is a strict
local maximizer of f .

If you finished all these second order conditions, you just compare the value of the function at the
local maximizers, to obtain the global maximizers.
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Exercise 3 (9 points).

John is travelling by car from a city to another (the distance between the two cities is given as d > 0
miles) and he wants to minimize his costs during this travel. First, time is precious, hence he wants to
travel for as short time as possible. Secondly, he wants to consume the lowest possible amount of fuel.
Help John to compute his optimal average speed in the following situations.

(1) John is a conscious driver, so he respects speed limitations. Suppose that on the trajectory between
the two cities there is a constant speed limit of vL > 0 miles/hour. John also estimated the fuel
consumption for his car and he realized that for a unit distance the amount of fuel that he needs is
proportional to the average speed, i.e. there exists an α > 0 constant (that he can compute) such
that the amount of fuel per unit distance is αv, where v is the average speed of the car on a unit
distance. Compute the optimal average speed that minimizes the sum of the needed time and the
consumed fuel in terms of d, vL and α. Discuss cases with respect to the relationship between vL
and α.

Hint: one knows that the time of the travel is the ratio of the distance and the average speed. You may
use the technique of KKT multipliers since we are looking for an optimal average velocity in the interval
[0, vL].

(2) John has read a new study which says that the optimal consumption of his car is actually achieved at
a higher speed, so after some research he has found that the consumed fuel on a unit distance is not
exactly a linear function of the average speed but it is given by α(v), where α : [0,+∞)→ [0,+∞)
is a smooth function, given by the expression

α(v) = γv(4/3 + cos(πv/60)),

where γ > 0 is a given positive constant.

Observe that α(0) = 0, α is strictly increasing at 0 and α has another local minimizer at v ≈ 60.

Let us assume that vL = 55 miles/hour (which is the speed limit), hence if he tries to travel with
v average speed, there is a chance that he gets a fine. John wants to know whether it would be
optimal to travel above the speed limit even if he gets a fine. We assume that he always gets a fine,
once he travels above the speed limit.

One knows also that the fine can be only given once on this trajectory, the value of it is depending
on the average speed as β(v − vL), where β : R→ [0,+∞) is the smooth function defined as

β(t) =

{
0, if t ≤ 0,
t2, if t > 0.

(i) Write down the optimization problem (involving the needed time, the cost of the fuel and the
fine) with a mathematical language, and explain why is this a problem without constraints!

(ii) Explain what does it mean (in terms of the fuel and the amount of the fine) if John travels
with an optimal average speed in (i) that is larger than vL.

(iii) Write down the first order necessary optimality condition that has to be satisfied for the
optimizer in (i).

(iv) Observe that the equation in (iii) is highly nonlinear, so propose an algorithm that can be used
to find an approximation of its root. Write down a recursive relation between two consecutive
terms of the approximation sequence.

(v) We are expecting an optimal average speed around 60 miles/hour. Hence initiate the algorithm
in (iv) with v0 = 60 and compute v1.

Solution
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(1) In this case the objective function is a simple function of the average speed, that is f : (0,+∞)→
(0,+∞) defined as

f(v) =
d

v
+ dαv.

The feasible set is Ω := (0, vL]. Since limv↓0 f(v) = +∞, we simply exclude v = 0 from our consideration.
We would like to minimize this function.

Let us use the theory of KKT multipliers to solve this problem. For that set g1(v) = −v and
g2(v) = v − vL, as real valued real functions and write the constraints as g1(v) ≤ 0 and g2(v) ≤ 0.

Now any candidate for local minimizer has to satisfy the KKT FONC, meaning that there exist
µ1, µ2 ≥ 0 such that at the optimizer v on has

− d

v2
+ dα− µ1 + µ2 = 0,

µ1(−v) + µ2(v − vL) = 0.

Now let us distinguish the usual cases. Case 1 if µ1 > 0 and µ2 > 0 is not possible, since it that case
at the same time v = 0 = vL, but vL > 0.

Case 2: µ1 = µ2 = 0 implies that (having in mind that v > 0) v =
√
α
α .

If one has that
√
α
α ≤ vL, then this is a good candidate. The condition is equivalent to

α ≥ 1/(vL)2. (2)

In this case, this will be clearly a local minimizer, because f ′′(
√
α/α) = 2d

(
√
α/α)3

> 0 and the second

derivatives of the constraints vanish.

Case 3: µ1 = 0 and µ2 > 0. This implies that v = vL, from where µ2 = d(1/(vL)2 − α) which is only
possible, if this quantity is nonnegative, hence if

α ≤ 1/(vL)2 (3)

is satisfied. If so, this would be also a local minimizer, since f ′′(vL) > 0.

Case 4: µ1 > 0 and µ2 = 0 cannot happen, since with would mean that v = 0 which cannot be
optimal by a previous reasoning.

It is clear that the two conditions (2) and (3) are almost excluding in nature. From the modeling
point of view, the first condition means that the consumption coefficient of the car is large, so it would be
more reasonable to not travel with a high speed. In the second case the situation is opposite, so since one
does not consume that much even at higher speeds, it is reasonable to travel with the highest possible
speed which is the speed limit itself in this case. In the common situation is when α = 1/(vL)2, both
cases will give vL as optimal average speed.

(2)(i) The new objective function will involve 3 terms, and it can be written as h : (0,+∞)→ (0,+∞)
defined as

h(v) =
d

v
+ dα(v) + β(v − vL),

for which one can consider a problem without constraints because the upper bound constraint is now
incorporated in β (he gets a fine, if he travels faster than the speed limit) and we just do not care about
the lower bound constraint, if one gets a candidate that is negative, we just ignore it. And by the same
reasoning as before, if v becomes small from above 0, then the function explodes.

(ii) If the optimal average speed is higher than the speed limit, that means that the optimal time at
this speed, plus the cost of the fuel, plus the value of the fine is smaller, that the time and the cost of
the fuel at vL. Morally speaking, the cost of the fuel is less, so this will balance the value of the fine.

(iii) Since we consider only interior points, FONC reads as

− d

v2
+ dα′(v) + β′(v − vL) = 0,
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which can be expressed further as

− d

v2
+ dγ(4/3 + cos(πv/60)− v(π/60) sin(πv/60)) + β′(v − vL) = 0, (4)

where

β′(t) =

{
0, if t ≤ 0,
2t, if t > 0.

(iv) A possible algorithm could be Newton’s algorithm to find a root of (4). (A secant algorithm for
instance is also possible to find the root).

If we denote the LHS of that equation by a function H(v) and taking an initial guess v0, the sequence
of approximations is defined as

vk+1 = vk − H(vk)

H ′(vk)
,

provided H ′(vk) 6= 0.
Let us compute H ′(v) now. One has

H ′(v) =
2d

v3
+ dγ[−(2π/60) sin(πv/60)− v(π/60)2 cos(πv/60)] + β′′(v − vL).

Let us evaluate the functions in v0 = 60. This means that

H(60) = − d

602
+ dγ[4/3− 1] + 10 = − d

602
+
dγ

3
+ 10

and

H ′(60) =
2d

603
+ dγ(π2/60) + 2,

thus the first step in Newton’s algorithm reads as

v1 = 60−
− d

602 + dγ
3 + 10

2d
603 + dγ(π2/60) + 2
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