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Exercise 1 (4 points).

Let us consider the following linear program

min{2x1 + 2x2 + 2x3} s.t.

 x1 + x2 + x3 = 6,
2x1 + x3 = 5,
−x2 + 3x3 = 7,

x1, x2, x3 ≥ 0. (LP1)

(1) Write a feasible solution for (LP1)!

(2) Does (LP1) have an optimal solution? If yes, is this solution unique? Determine all the optimal
solutions and the value of the objective function as well!

(3) What would happen, if one would exchange the constraint x1, x2, x3 ≥ 0 in (LP1) to x1, x2, x3 ≤ 0?
Would this new problem have a solution?

Imagine now that one removes the last equality constraint and one considers

min{2x1 + 2x2 + 2x3} s.t.

{
x1 + x2 + x3 = 6,

2x1 + x3 = 5,
x1, x2, x3 ≥ 0. (LP2)

(4) What does the set of constraints in (LP2) represent geometrically? Is it convex? Determine all the
feasible solutions for (LP2)! Justify your answer!

(5) Determine all the optimal feasible solutions for (LP2)! Do we still have uniqueness? Determine the
value of the objective function for the feasible solutions! Justify your answers!

Hint: it is easier to use some geometrical arguments and the structure of (LP2), than to use the simplex
algorithm for instance.

Solution.
(1) It is easy to check that the constraint system has precisely one solution, i.e. (1, 2, 3) for which all

its coordinates are nonnegative. So this is the only feasible solution for (LP1).
(2) By (1) one knows that there exists precisely one feasible solution, in particular this is optimal and

it is a unique optimizer for (LP1). The value of the objective function at (1, 2, 3) is 12.
(3) Since by (1) the constraint system has only one solution that is (1, 2, 3), by changing the inequalities

to the opposite ones, (LP1) would not have any feasible solution, hence no optimal solution either.
(4) The constraint system represent the intersection of two planes in R3 that are not parallel, so the

intersection is a line. Taking for instance x2 as a parameter, we have x1 = x2 − 1 and x3 = 7 − 2x2,
which together with the inequality constraints (x2 − 1 ≥ 0, x2 ≥ 0 and 7− 2x2 ≥ 0) provide us the set of
all feasible solutions, i.e. the line segment parametrized as (x2− 1, x2, 7− 2x2) where x2 ∈ [1, 7/2], which
is clearly a convex set.

(5) Since the objective function is 2x1 + 2x2 + 2x3 = 2(x1 + x2 + x3) = 12 for all feasible solutions
in (LP2) (since x1 + x2 + x3 = 6), every feasible solution determined in (4) is optimal with the same
objective function value of 12. Hence we do not have uniqueness.
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Exercise 2 (6 points).

Find the triangles in the plane with a fixed given area A > 0 that have minimal perimeter. To this
aim determine the lengths of their sides a, b, c > 0 in terms of A using the theory of Lagrange multipliers.

(1) Write down the first order optimality conditions and select the candidates for the optimizers!

(2) Eventually using second order optimality conditions, determine which from the selected candidates
in (1) are indeed optimizers.

Hint: you may use Heron’s formula for the area, i.e A =
√
p(p− a)(p− b)(p− c), where p :=

a+ b+ c

2
is the semi-perimeter. Solutions, using other formulas will be also accepted.

Solution.
The problem can we formulated as

min f(a, b, c, p) := 2p

subsect to
h1(a, b, c, p) := a+ b+ c− 2p = 0

and
h2(a, b, c, p) := p(p− a)(p− b)(p− c)−A2 = 0.

We do not impose directly the inequality constraints a, b, c > 0, this will be hidden in the problem,
meaning that one should be sure when we find a solution that all its coordinates are positive.

(1) By FONC in the Lagrangian theory one has that if (a, b, c, p) is an optimizer, then there exists
λ1, λ2 ∈ R such that ∇f(a, b, c, p) + λ1∇h1(a, b, c, p) + λ2∇h2(a, b, c, p) = 0, which give us the following
system

λ1 − λ2p(p− b)(p− c) = 0
λ1 − λ2p(p− a)(p− c) = 0
λ1 − λ2p(p− a)(p− b) = 0

2− 2λ1 + λ2[(p− a)(p− b)(p− c) + p(p− b)(p− c) + p(p− a)(p− c) + p(p− a)(p− b)] = 0.

Notice first that if λ2 = 0, the first equation implies that λ1 = 0 as well, which by the last equation
(2 = 0) would lead to a contradiction. So one has always that λ2 6= 0.

Secondly, if λ1 = 0 and λ2 6= 0, since p > 0 the first 3 equations imply that at least two of the
equations p− a = 0, p− b = 0, p− c = 0 should hold true, which by the fourth equation once again (2=0)
lead to a contradiction.

So one always has that λ1 6= 0 and λ2 6= 0. This will immediately imply by the first 3 equations
that p 6= a, p 6= b and p 6= c. Continuing the argument, the first three equations easily imply now that

a = b = c. Using this fact, one can simplify the above system using p =
3

2
a and p−a = p−b = p−c = 1

2a
as 

λ1 − λ2
3

8
a3 = 0

2− 2λ1 + λ2
5

4
a3 = 0.

In addition, Heron’s formula fives us
3

16
a4 = A2, from where knowing that a > 0 one has that a =

2
√
A

4
√

3
.

Now solving the above system for λ1 and λ2 one has that λ1 = −3

2
and λ2 = − 4

a3
.

(2) Clearly the tangent space at any point is T (a, a, a, 3a/2) = {(y1, y2, y3, 0) ∈ R4 : y1 + y2 + y3 = 0}.
On the other hand since f and h1 are linear functions, their Hessian matrices are 0. So, one only need to
compute D2h2(a, a, a, 3a/2) and one needs to multiply this matrix by any element from T (a, a, a, 3a/2).
The computation of D2h2 is rather complicated, but one can notice immediately that since we have to
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multiply it by an element from the tangent space, all these vectors have 0 fourth coordinate, so actually
the fourth column of D2h2 does not play any role, that is why we do not compute it. For the other entries
one has

D2h2(a, b, c, p) =

 0 p(p− c) p(p− b) . . .
p(p− c) 0 p(p− a) . . .
p(p− b) p(p− a) 0 . . .

−[(p− b)(p− c) + p(p− b) + p(p− c)] −[(p− a)(p− c) + p(p− a) + p(p− c)] −[(p− a)(p− b) + p(p− a) + p(p− b)] . . .


which in particular gives us

D2h2(a, a, a, 3a/2) =


0 3a2/4 3a2/4 . . .

3a2/4 0 3a2/4 . . .

3a2/4 3a2/4 0 . . .

−7a2/4 −7a2/4 −7a2/4 . . .

 .

This implies that for all y ∈ T (a, a, a, 3a/2) one has y>D2(a, a, a, 3a/2)y = 3a2/4(2(y1y2 + y2y3 + y3y1)).
Since y1+y2+y3 = 0, taking squares of both sides one obtains that 2(y1y2+y2y3+y3y1) = −(y21+y22+y23),
thus

λ2y
>D2(a, a, a, 3a/2)y = − 4

a3
3a2

4
(−(y21 + y22 + y23)) =

3

a
(y21 + y22 + y23) > 0

for all y ∈ T (a, a, a, 3a/2), y 6= 0. In particular the SOSC is satisfied, hence the equilateral triangle with

side length a =
2
√
A

4
√

3
has the smallest perimeter among all triangles having area A.
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Exercise 3 (6 points).

Let us consider the function f : Rn → R defined as

f(x) =
1

2
x>Ax− b>x+ γ‖x‖2,

where n ≥ 1 is an integer, A ∈ Rn×n is a symmetric matrix, b ∈ Rn, γ ∈ R and ‖x‖ :=
√
x21 + x22 + · · ·+ x2n

denotes the Euclidean norm of the vector x ∈ Rn. In the followings, we denote the eigenvalues (that are all
real) of A with possible multiplicities ordered by λ1 ≤ λ2 ≤ · · · ≤ λn. We aim to study the minimization
problem

min
x∈Rn

f(x). (P)

(1) Show that the condition λ1 + 2γ > 0 is a sufficient condition that ensures that (P) has a unique
solution. Determine this unique solution! Hint: you may use first and second order optimality
conditions! Moreover you may use Rayleigh’s inequality, saying that if Q ∈ Rn×n is symmetric,

then the minimum of Rayleigh’s quotient
x>Qx

‖x‖2
is the smallest, while the maximum of this quotient

is the largest eigenvalue of Q.

(2) Let us suppose that for some of the eigenvalues λi one has λi + 2γ < 0. Show that in this case
(P) does not have a solution! Hint: select a sequence of vectors (xk)k≥0 (using for instance the
eigenvectors associated to the eigenvalue λi) such that f(xk) → −∞, as k → +∞. You may also
use the Cauchy-Schwartz inequality (i.e. a · b ≤ ‖a‖‖b‖,∀a, b ∈ Rn).

From now on, one supposes that the assumption in (1), i.e. λ1 + 2γ > 0 is satisfied, hence (P) has a
unique minimizer x∗. We aim to find this minimizer numerically.

(3) Discuss why could we use Newton’s algorithm to find x∗. How many steps are necessary using
Newton’s algorithm to find x∗ starting from any initial guess x0 ∈ Rn? Justify your answer!

(4) Explain why can we use the conjugate direction algorithm developed during the lectures to find x∗!
With respect to which matrix need we choose the conjugate directions? Justify your answer!

(5) Suppose that A = In is the identity matrix. Construct a set of n vectors that are conjugate w.r.t.
the matrix determined in (4)!

(6) Suppose once again that A = In. Write down the updates in the conjugate direction algorithm to
find x∗ starting from and initial point x0 using the conjugate directions from (5)!

(7) Explain what is happening geometrically while proceeding the algorithm in (6)! Supposing that
one knows x∗, construct an initial guess x0 for which the algorithm in (6) terminates in precisely 2
steps.

Solution.
Notice first that we can write the objective function as

f(x) =
1

2
x>(A+ 2γIn)x− b>x.

Let us use the notation Q := A+ 2γIn.
(1) At a minimizer one has to satisfy the FONC, and if SOSC is satisfied at a point for which FONC

holds, then the point is a minimizer. Since Q is also symmetric, one has ∇f(x) = Qx−b and D2f(x) = Q.
By Rayleigh’s inequality one has

x>Qx = x>Ax+ 2γ‖x‖2 ≥ (λ1 + 2γ)‖x‖2 > 0, ∀x ∈ Rn,

5



by the assumption that λ1 + 2γ > 0. So Q is a positive definite matrix, which implies that there exists a
unique minimizer, which is x∗ = Q−1b.

(2) Following the hint, set xk = kvi, k ∈ N, where ‖vi‖ = 1 is an eigenvector of A corresponding to
λi. Clearly

f(xk) =
1

2
(xk)>Axk − b>xk + γk2 =

1

2
λik

2 + γk2 − b>xk ≤
(

1

2
λi + γ

)
k2 + k‖b‖,

where we use the Cauchy-Schwarz inequality in the last inequality. Since λi + 2γ < 0, one has that
1
2λi + γ < 0 and

lim
k→+∞

f(xk) ≤ lim
k→+∞

(
1

2
λi + γ

)
k2 + k‖b‖ = −∞,

hence there exists no minimizer for f on Rn.
(3) By the assumption in (1), f is a quadratic function with Q > 0, so Newton’s algorithm can be

used to find x∗ in one step starting at arbitrary x0 ∈ Rn. Building the first update starting at x0 one has

x1 = x0 −Q−1(Qx0 − b) = Q−1b = x∗.

(4) f is a quadratic function with Q > 0, hence the conjugate direction algorithm developed during
the lectures applies here. We need to choose conjugate directions w.r.t. Q = A+ 2γIn.

(5) If A = In, Q = (1+2γ)In. Hence the conjugate direction have to by precisely pairwise orthogonal.
A such of set could be the canonical basis of Rn, that we denote by {e0, . . . , en−1}.

(6) Pick an initial guess x0 ∈ Rn, then construct

xk+1 = xk + αke
k,

where

αk = argminαf(xk + αek) = −∇f(xk) · ek

(ek)>Qek
= − (1 + 2γ)xk · ek − b · ek

1 + 2γ
.

(7) Geometrically, since the conjugate direction algorithm uses the canonical basis of Rn, at each step
we “hit” the corresponding coordinate of the optimizer x∗. More precisely after k iterations, xk has at
least k coordinates matching with the coordinates of x∗.

For an initial guess that has its last n−2 coordinates exactly the same as x∗, the algorithm terminates
in precisely two steps.
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Exercise 4 (5 points).

A small company in a country far-far away named Appel wants to attribute three tasks (let us say:
changing the locks on some of the office doors; ordering the files in some of the offices and assembling
some electronic devices) to its workers (John the locksmith and Jane the accountant) in a way that it
maximizes the productivity. We know that both John and Jane can work on fractions of each of the tasks
and based on previous experience, the company knows exactly how productive John and Jane is for the
different tasks. This can be seen from the following productivity matrix

P =

(
5 1 3
0 4 2

)
.

The two rows of this matrix represent the productivity of John and Jane, respectively in the different
tasks, e.g. John has a productivity 5 when changing the locks, while 1 for ordering the files, while Jane
has productivity 0 when changing locks and productivity 2 for assembling the devices, and so on.

We know moreover the total number of each tasks: there are 3 locks to be changed, 2 offices with files
to be ordered and 10 electronic devices to be assembled.

The company is aiming to find the optimal values for the variables γij ≥ 0, i ∈ {1, 2} and j ∈ {1, 2, 3}
which represent how much John and Jane works on the different tasks to obtain the highest possible
global productivity. For instance if we get γ13 = 7.4 that means that John should assemble 7.4 electronic
devices, if we get γ22 = 1.7 that means that Jane should order the files in 1.7 offices, etc.

So the company is looking for γij ’s that solve the problem

max

2∑
i=1

3∑
j=1

Pijγij ,

under the constraints that all the tasks are completed. Our job is to find these optimal quantities and
let the company know how to distribute the different tasks among John and Jane.

(1) Write the above problem as a linear program, i.e. write the objective function that has to be
maximized together with the constraints that should be satisfied. Explain how did you obtain
them!

(2) Is the LP from (1) in standard form (in the sense of our lectures)? If not, transform it into a
standard form. Justify your answer!

(3) Transform the LP from (1) into canonical form (in the sense of our lectures). Give two different set
of basic variables and write a basic feasible solution for each cases.

(4) Use the simplex algorithm to solve the LP from (1), at each step write the reduced cost coefficients
and a basic feasible solution. Write the optimal solution and the value of the objective function at
the optimizer.

(5) Is the optimizer that you have found in (4) unique? Justify your answer! Interpret the solution
that you have found in (4)! What do you observe from the “economical point of view”? For this,
answer the following questions: what would be different if we would change the coefficients in the
matrix P? Do you observe the same phenomena? Would be something different if one would have
more than one locksmith or accountant at the company with similar skills?

Solution.
(1) The objective function to be maximized is f : R6 → R defined as

f(γ11, γ12, γ13, γ21, γ22, γ23) = 5γ11 + γ12 + 3γ13 + 4γ22 + 2γ23.
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To simplify the notation one uses the notation x ∈ R6 for (x1, x2, x3, x4, x5, x6) := (γ11, γ12, γ13, γ21, γ22, γ23).
We have 3 equality constraints coming from the fact that John and Jane have to complete all the tasks;
these can be written in term of x as  x1 + x4 = 3

x2 + x5 = 2
x3 + x6 = 10,

where the first equation means for instance that the total amount that John and Jane works together on
changing locks should be 3, since there are 3 locks to be changed, and so on. We know also that all the
variables should be nonnegative, so xi ≥ 0 for all i ∈ {1, . . . , 6}, or x ≥ 0 with the vectorial notation.

Introducing the matrix

A :=

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and the vector b := (3, 2, 10)> the linear program that we get reads as

max f(x) s.t. Ax = b and x ≥ 0. (LPAppel)

(2) (LPAppel) is not in standard form, because it is a maximization. Introducing

c = (−5,−1,−3, 0,−4,−2)>

one has that c>x = −f(x). Moreover x ≥ 0 and rank(A) = 3 < 6, so (LPAppel) in standard form reads as

min c>x s.t. Ax = b and x ≥ 0. (LPSAppel)

(3) (LPSAppel) is already in canonical form, since for instance either the first 3 column or last last 3
ones form I3 and b ≥ 0.

The two sets of basic variables are for instance {x1, x2, x3} with the corresponding basic feasible
solution (3, 2, 10, 0, 0, 0)> and {x2, x4, x6} with the corresponding basic feasible solution (0, 2, 0, 3, 0, 10)>.

(4) Since (LPSAppel) contains many identity blocks, we can start the simplex algorithm for instance
with {x1, x2, x3} as basic variables and (3, 2, 10, 0, 0, 0)> as the corresponding basic solution. The canon-
ical augmented matrix (CAM) reads at the beginning as

a1 a2 a3 a4 a5 a6 b
1 0 0 1 0 0 3
0 1 0 0 1 0 2
0 0 1 0 0 1 10.

Now we compute the reduced costs coefficients r4, r5, r6 as

r4 = c4 − c>ã4 = 0 + 5 = 5
r5 = c5 − c>ã5 = −4 + 1 = −3
r6 = c6 − c>ã6 = −2 + 3 = 1,

where by ãi ∈ R6 we denote the column ai “augmented w.r.t. the basic variables” to be a vector in R6.
Since r5 = −3 < 0 and all the others are positive, a5 will enter the basis. It is clear by trying to build
the fractions bi/ai5 that the only possibility is 2/1, hence a2 has to exit the basis. Since a5 has the same
form as a2 one does not have to perform any row operations, the CAM will remain the same.

The new basic variables are {x1, x5, x3} and the corresponding basic feasible solution is (3, 0, 10, 0, 2, 0)>.
The new reduced cost coefficients are

r2 = c2 − c>ã2 = −1 + 4 = 3
r4 = c4 − c>ã4 = 0 + 5 = 5
r6 = c6 − c>ã6 = −2 + 3 = 1.

Since all the reduced cost coefficients are nonnegative, we reached an optimal solution, which is

x∗ = (3, 0, 10, 0, 2, 0)>.
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The value of the objective function at this point is f(3, 0, 10, 0, 2, 0) = 53.
(5) The interpretation of the solution found in (4) is the following: γ11 = 3, γ13 = 10 and γ22 = 2

which means that the maximal productivity for the company will be achieved, provided John changes
all the 3 locks and assembles all the 10 devices, while Jane orders the files in both offices. This means
from the economical point of view that both of them will do those tasks fully in which they are more
productive than their colleague. With other words it would not be productive for the company a situation
when John assembles only 9 devices and Jane assembles the remaining one, for instance.

By the mathematical structure of the problem, since the matrix A has only columns which are columns
of the identity matrix, even if a basic variable exits and a nonbasic enters, the table will be always
unchanged. Which means in particular that the last column (for b) is always unchanged. This means
that always one person will complete all the parts of a task fully, one cannot observe ever that they both
work on the same kind of task, if we want to achieve the highest productivity.

This last phenomenon will be the same, even if we change the coefficients in the productivity matrix
P , what will change will be that they may work on different tasks, on the ones in which they are more
productive, than the other.

By the fact that the entries in all the columns of P are different, and by the fact that we know that
always a person completes a task entirely, one has uniqueness of solution in the current scenario. Giving
the task to the other person will result a lower objective function value. On the other hand, it worth to
mention that if the entries of a column in P would be the same (meaning both of them have the same
productivity while working on a task), then the uniqueness would not hold true, we would have the same
objective function value either when John completes that particular task, or when Jane does.

If one would have more than one locksmith or more than one accountant, the situation would be the
same, if one represents the productivity of everyone in a different row of P (every new person would
introduce 3 new variables into the problem and the identity block structure would remain the same just
in higher dimensions). If one would redefine the problem, writing the productivity of a group of people
for each task, instead of for everyone separately, the situation could be different.

9



Exercise 5 (5 points).

Let f : Rn → R be a C1 function. We define the function f∗ : Rn → R ∪ {+∞} as

f∗(y) = max
x∈Rn
{y · x− f(x)},

whenever the maximizer exists and +∞ otherwise. We aim to study some properties of f∗.

(1) Show that if f(0) = 0 then f∗(y) ≥ 0 for all y ∈ Rn.

(2) Show that x · y ≤ f(x) + f∗(y) for all x, y ∈ Rn.

(3) Let p > 1 and f(x) =
1

p
‖x‖p. Show that f∗ is well-defined (i.e. its value is always finite) and

f∗(y) =
1

q
‖y‖q where

1

p
+

1

q
= 1. Hint: use for instance the Cauchy-Schwartz inequality for the

first part (i.e. a · b ≤ ‖a‖‖b‖,∀a, b ∈ Rn) and the first order necessary optimality condition for the
second part. For the second part you should first understand what is happening when n = 1.

(4) Using the previous points, show Young’s inequality, i.e. x · y ≤ 1

p
‖x‖p+

1

q
‖y‖q for all x, y ∈ Rn and

1

p
+

1

q
= 1.

(5) Let us define f∗∗ = (f∗)∗. Suppose that f∗ and f∗∗ are well-denied (i.e. finite) everywhere in Rn.
Show that f∗∗(x) ≤ f(x) for all x ∈ Rn.

Solution.
(1) By the definition of f∗ (since it is a max) one has f∗(y) ≥ y ·x− f(x) for all x ∈ Rn. In particular

if x = 0, by the fact that f(0) = 0 one has the desired lower bound.
(2) Once again using the definition of f∗ one has that f∗(y) ≥ y ·x− f(x) for all x, y ∈ Rn. Rewriting

the terms one obtains f∗(y) + f(x) ≥ y · x for all x, y ∈ Rn.
(3) Since f(0) = 0 one has by (1) that f∗(y) ≥ 0 for all y ∈ Rn. So one has to show only that f∗(y)

is bounded from above for all y ∈ Rn. Let us pick x, y ∈ Rn, one has by the Cauchy-Schwarz inequality
that

x · y − f(x) = x · y − 1

p
‖x‖p ≤ ‖x‖‖y‖ − 1

p
‖x‖p = ‖y‖t− 1

p
tp,

where t := ‖x‖. Let us use the notation c := ‖y‖ ≥ 0. We need to study the growth properties of the
function

g : [0,+∞)→ R, g(t) = ct− 1

p
tp.

Clearly g′(t) = c− tp−1 = 0 has a unique solution, when p > 1, namely t = c
1

p−1 which is a maximizer of

g. This means that g(t) ≤ g(c
1

p−1 ) for all t ∈ [0,+∞). This implies in particular that

x · y − f(x) ≤ cc
1

p−1 − 1

p
c

p
p−1 ,

and the right hand side is independent of x, so taking the maximum of both sides w.r.t. x ∈ Rn, one
obtains that

f∗(y) ≤ c
p

p−1 − 1

p
c

p
p−1 =

1

q
cq,

where c = ‖y‖ and q =
p

p− 1
.

Thus one obtained f∗(y) ≤ 1

q
‖y‖q, hence in particular f∗ is well-defined for all y ∈ Rn.
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We need to show now the opposite inequality, i.e. f∗(y) ≥ 1

q
‖y‖q. Since f∗(y) ≥ x · y − f(x) for all

x ∈ Rn, take x = ‖y‖
1

p−1−1y (which is coming from the FONC, since ∇f(x) = ‖x‖p−2x) then one has

f∗(y) ≥ ‖y‖1+
1

p−1 − 1

p
‖y‖

p
p−1 =

1

q
‖y‖q.

This shows the desired equality.
(4) Is a simple consequence of (2) and (3).
(5) One has

f∗∗(x) = max
y
{y·x−f∗(y)} = max

y
{y·x−max

z
{y·z−f(z)}} = max

y
{y·x+min

z
{−y·z+f(z)}} ≤ max

y
{y·x−y·x+f(x)} = f(x),

where we used the fact that minz{−y · z + f(z)} ≤ −y · x+ f(x).
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