Math 164-1: Optimization – Homework 3

Due: April 15, 2016

Exercise 1. Exercises 6.13, 6.14 and 6.26 from the book of Chong and Zak.

(i) (Exercise 6.13) Consider the problem

 $\min_{x \in \Omega} f(x),$

where $f : \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x) = -3x_1$ with $x = [x_1, x_2]^T$, and $\Omega = \{x = [x_1, x_2]^T : x_1 + x_2^2 \le 2\}$. Answer each of the following questions, showing complete justification.

- (a) Does the point $x^* = [2, 0]^T$ satisfy the first-order necessary condition?
- (b) Does the point $x^* = [2,0]^T$ satisfy the second-order necessary condition?
- (c) Is the point $x^* = [2, 0]^T$ a local minimizer?
- (ii) (Exercise 6.14) Consider the problem

$$\min_{x \in \Omega} f(x)$$

where $\Omega = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 1\}$ and $f(x) = x_2$.

- (a) Find all point(s) satisfying the first order optimality condition.
- (b) Which of the point(s) in part (a) satisfy the second order optimality condition?
- (c) Which of the point(s) in part (a) are local minimizers?
- (iii) (Exercise 6.26) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a $C^1(\mathbb{R}^2)$ function. Consider the problem

$$\min_{x_1, x_2 \ge 0} f(x),$$

where $x = [x_1, x_2]^T$. Suppose that $\nabla f(0) \neq 0$, and

$$\frac{\partial f}{\partial x_1}(0) \le 0, \frac{\partial f}{\partial x_2}(0) \le 0.$$

Show that 0 cannot be a minimizer for this problem.

Exercise 2 (Alternative optimality conditions).

(1) Suppose that $\Omega \subset \mathbb{R}^d$ is a closed bounded convex set and $f : \mathbb{R}^d \to \mathbb{R}$ is a C^1 function. Show that if $x^* \in \Omega$ satisfies the condition

$$\nabla f(x^*) \cdot e > 0,$$

for all feasible direction $e \in \mathbb{R}^d$ at x^* (and we suppose that there exists at least one feasible direction at x^*) then x^* is a strict local minimizer of f on Ω .

(2) Define a set $\Omega \in \mathbb{R}^2$ and a point $x^* \in \Omega$ such that there exists precisely 3 feasible directions $e_1, e_2, e_2 \in \mathbb{R}^2$ at x^* ! We know that for a C^1 function $f : \mathbb{R}^2 \to \mathbb{R}$ one has that $\nabla f(x^*) \cdot e_1 > 0$ and $\nabla f(x^*) \cdot e_2 = 0, \nabla f(x^*) \cdot e_3 = 0$. Can we say that x^* is a strict local minimizer of f on Ω ? Justify your answer.

Exercise 3.

Exercises 20.2 and 20.3 from the book of Chong and Zak.

Exercise 4.

Exercises 20.4. and 20.5 from the book of Chong and Zak.