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Exercise 1 (13 points).

Let us consider the rhombus Ω ⊂ R2 bounded by the straight lines y = x, y = −x, y =
√

2 + x and
y =
√

2 − x. We consider the function f : R2 → R given as f(x, y) = x2 + y2 −
√

2y + 9/2. We aim to
find all the local minimizers and maximizers of f on Ω. Note that by Weierstrass’ theorem (Ω is compact
and f is continuous on Ω), both global minimizers and maximizers exist.

(1) Select all the candidates from the interior of Ω both for local minimizers and maximizers.

(2) Using second order sufficient conditions decide whether the selected points in (1) are local minimiz-
ers, maximizers or neither of them.

(3) Compute the feasible directions at (0, 0). Using first and second order necessary conditions, decide
whether (0, 0) is a good candidate for local maximizer of f on Ω or not. Compute the value of f at
(0, 0) and compare it with the values of f at the other three vertices of Ω.

(4) Find the global maximizers of f on the side of Ω where y = x. Compute the value of f at these
points. Hint: do not use Lagrange multipliers!

(5) Characterize and draw the following level sets of f : LS5 := {(x, y) ∈ R2 : f(x, y) = 5} and
LS6 := {(x, y) ∈ R2 : f(x, y) = 6}.

(6) Find all the global maximizers and minimizers of f on Ω. Hint: you may use some of the geometrical
properties of f – from the previous point – and point (3).

Solutions
(1) For interior points the first order necessary condition reads as ∇f(x, y) = 0 which is equivalent to

(x, y) = (0,
√

2/2), and clearly this is an interior point of Ω.
(2) Clearly D2f(x, y) = 2I2 for all (x, y) ∈ R2 (where I2 is the identity matrix in R2×2) which is a

positive definite matrix, the point (x, y) = (0,
√

2/2) selected in (1) is an interior point (at which ∇f
vanishes), hence by the second order sufficient condition it is a strict local minimizer of f on Ω.

(3) Feasible directions at (0, 0) are those vectors e = (e1, e2) ∈ R2 for which e2 ≥ e1 and e2 ≥ −e1
(hence they lie in the intersection of the two half-planes), from where one obtains that e2 ≥ 0 and
−e2 ≤ e1 ≤ e2.

At (0, 0) the first order necessary condition for local maximizer reads as ∇f(0, 0) · e ≤ 0 for all e
feasible directions at (0, 0). This is equivalent to (0,−

√
2) · e ≤ 0 which is −

√
2e2 ≤ 0, which holds true,

since for the feasible directions at (0, 0) one has e2 ≥ 0.
As seen in (2), D2f(x, y) = 2I2 for all (x, y) ∈ R2, and the second order necessary condition (for

(0, 0) to be a local maximizer) should be that e>D2f(0, 0)e ≤ 0 for all e feasible directions at (0, 0) for
which ∇f(0, 0) · e = 0. This is equivalent to 2(e21 + e22) ≤ 0 for all e feasible direction at (0, 0) for which
e1 = e2 = 0, which is a trivial direction and hence the second order necessary condition for (0, 0) to be a
local maximizer holds true.

f(0, 0) = 9/2 = f(
√

2/2,
√

2/2) = f(−
√

2/2,
√

2/2) = f(0,
√

2), thus the values of the function are
the same at all the vertices of Ω.

(4) On the side of Ω where y = x the function reduces to a function of one variable, i.e. g(x) =
f(x, x) = 2x2−

√
2x+9/2 which has to the optimized on x ∈ [0,

√
2/2]. In the interior of the interval if one

has a local maximizer, one should have that g′(x) = 0, which is equivalent to x =
√

2/4, which is an interior
point. But the parabola is convex, hence it has a global minimizer at this point (f(

√
2/4,
√

2/4) = 17/4).
Since the parabola g is symmetric on [0,

√
2/2], one has that the maximum of f is achieved in both

endpoints on the line segment (0, 0) and (
√

2/2,
√

2/2), where one has computed already the values of f
in (3) which was 9/2.

(5) f can be written as

f(x, y) = x2 + (y −
√

2/2)2 + 4.

Hence all the level sets of f (for levels greater than 4) are circles around the point (0,
√

2/2). In particular
LS5 := {(x, y) ∈ R2 : x2 + (y −

√
2/2)2 = 1} and LS6 := {(x, y) ∈ R2 : x2 + (y −

√
2/2)2 = 2}.
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(6) Using the previous point, having in mind that the level sets of f are circles, the value of f at a
point (x, y) represents the distance square of this point from the ‘center’ (0,

√
2/2) plus 4, i.e

f(x, y) = ‖(x, y)− (0,
√

2/2)‖2 + 4.

Moreover Ω is symmetric w.r.t. (0,
√

2/2) and f is radially increasing w.r.t. the center (larger is the level
at which one considers the function, larger is the value of it), it is clear that its maximum is attained on
a level set which has the largest radius still intersecting Ω (i.e. precisely

√
2/2). These points (the global

maximizers of f) are precisely the 4 vertex points (which are on LS 9
2
) and the value of the function at

these points was computed in (3). By the same reasoning, the global minimum of the function is attained
at the local minimizer (since this has distance 0 from the center), computed in (1), which is the ‘center’.
And the value of f here is 4.
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Exercise 2 (8 points).

Let A ∈ Rn×n, n ≥ 1, be a symmetric matrix. We would like to find the minimum and the maximum
of the so-called Rayleigh quotient associated to the matrix A. To do so, we define the Rayleigh quotient

as the the function R : Rn \ {0} → R, defined as R(x) =
x>Ax

‖x‖2
. Here ‖x‖ :=

√
x21 + · · ·+ x2n denotes the

usual euclidean norm on Rn.

(1) Show that R(cx) = R(x) for all x ∈ Rn \ {0} and c ∈ R \ {0}.

(2) Using (1), show that looking for the local maximizers and minimizers of R on Rn \{0} is equivalent
to look for the local extremizers of R on the set Ω := {x ∈ Rn : ‖x‖2 = 1}.

(3) Using eventually the theory of Lagrange multipliers, show that the possible candidates for the local
extremizers of R on Ω are the eigenvectors (normalized to be points in Ω) of A.

(4) Characterize the tangent space T (x1) and the normal space N(x1) to Ω at x1, where x1 ∈ Ω is an
eigenvector of A associated to the smallest eigenvalue λ1 of A.

(5) Assuming that one can order the eigenvalues (with possible multiplicities) of A as λ1 < λ2 ≤ · · · ≤
λn−1 < λn, find the global minimizers and maximizers of R on Ω. Compute the minimum and the
maximum of R.

Hint: you may plug in the candidates from (3) into R to find the global extremizers. Another possibility
is to work with second order sufficient conditions from the Lagrangian theory.

Solutions

(1) By direct computation one checks R(cx) =
(cx)>A(cx)

‖cx‖2
=
c2x>Ax

c2‖x‖2
= R(x).

(2) From (1) we see that R is depending only on the direction of the vector x and not on its length,
in particular for all x ∈ Rn \ {0} one has that R((1/‖x‖)x) = R(x) and ‖x/‖x‖‖ = 1, hence it is enough
to look for the local minimizers and maximizers of R on the unit sphere Ω.

(3) By (2) one has that optimizing R on Rn \ {0} is equivalent to optimize it on Ω. Hence the local
extremizers of R (and the optimal values) are the same as for the function P : Rn → R, P (x) = x>Ax
on Ω. The first order necessary Lagrangian condition says that if x ∈ Ω is a local extremizer of P on Ω,
then there exists a constant λ ∈ R such that ∇P (x) = λ∇h(x), where h : Rn → R, h(x) = ‖x‖2 − 1.
Computing the gradients, one has that

2Ax = 2λx,

which is clearly the condition for x ∈ Ω to be the eigenvector of A associated to the eigenvalue λ ∈ R of
A.

(4) By definition T (x1) = {y ∈ Rn : ∇h(x1) · y = 0} = {y ∈ Rn : 2x1 · y = 0}, which is
the (n − 1)−dimensional hyperplane in Rn orthogonal to x1. Since T (x1) and N(x1) are orthogonal
complements, one has that N(x1) is the line passing through 0, which has direction x1.

(5) Since any local extremizer of P (hence of R) is an eigenvector of A (in Ω), let us compute P (xi),
where xi is any eigenvector associated to λi (i ∈ {1, . . . , n}.)

P (xi) = (xi)>Axi = (xi)>λix
i = λi.

This implies in particular that P (xi) ≤ P (xj), if i ≤ j and in particular P (x1) < P (xj) < P (xn) for all
j ∈ {2, . . . , n − 1}. We know that one can chose a set of n eigenvectors that form an orthonormal basis
of Rn, hence every x ∈ Rn can be written as linear combination of these vectors. Thus, if x ∈ Rn with
‖x‖ = 1, one has that

P (x) = x>Ax = c21λ1 + . . . c2nλn,

where ci is the coefficient in the front of xi, while writing x in the orthonormal basis of the eigenvectors.
In particular c21 + · · ·+ c2n = 1. Hence it is clear that P (x1) = λ1 < P (x) < λn = P (xn), for all ‖x‖ = 1,
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hence clearly the eigenvectors corresponding to λ1 are strict global minimizers of P (hence of R) and the
eigenvectors corresponding to λn are strict global maximizers of P (hence of R) on Ω. The minimal and
maximal values of P and R are λ1 and λn respectively.

If one wants to work with the second order sufficient Lagrangian conditions instead (which is more
difficult), one has to consider the matrices

L(xi, λi) = 2A− 2λiIn,

and check the sign of y>L(xi, λi)y for all y ∈ T (xi), where In ∈ Rn×n denotes the identity matrix. Let
us check it for i = 1 (we forget about the positive coefficient 2).

y>L(xi, λi)y = y>Ay − λ1‖y‖2.

Since y ∈ T (x1), one has that y is orthogonal to x1, hence while writing y in the orthonormal basis formed
by eigenvectors of A one does not have a component of x1, i.e. y = c2x

2+. . . cnx
n (with c22+. . . c2n = ‖y‖2)

which implies that

y>L(xi, λi)y = y>Ay − λ1‖y‖2 = c22λ2 + . . . c2nλn − λ1‖y‖2 > ‖y‖2(λ2 − λ1) > 0,

thus by the second order sufficient condition all the eigenvectors associated to λ1 are strict local minimizers
of P (hence of R) on Ω. The fact that they are global follows from the same arguments as in the first
approach.

The global maximality of the eigenvectors associated to λn follow from a similar argument.
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Exercise 3 (6 points).

Let us consider the domain Ω ⊂ R2 defined as Ω := {(x, y) ∈ R2 : x ∈ [1, e]; 0 ≤ y ≤ ln(x)}, where
e denotes the base of the natural logarithm ln. We aim to find the global minimizers and maximizers of
the function f : R2 → R, f(x, y) = exy on Ω. Here also we observe that we are optimizing a continuous
function on a compact set, hence the existence of a global minimizer and a global maximizer is given by
the Theorem of Weierstrass.

(1) Show that there are no candidates for local extremizers of f in the interior of Ω and deduce that
the global extremizers lie on ∂Ω.

(2) Decompose ∂Ω into three pieces and find the global maximizers and minimizers of f on each of the
pieces. Explain why cannot we use the theory of Lagrange multipliers for equality constraints on
each piece of the boundary separately! Observe then that to find the extremizers on each piece of
the boundary reduces the problem to a 1D problem.

(3) Deduce from (2) the global minimizers and maximizers of f on Ω. Compute the maximal and
minimal values as well.

Solutions
(1) For a local extremizer (x, y) in the interior of Ω one should have that ∇f(x, y) = 0, which is

equivalent to (x, y) = (0, 0). Since this point is outside of Ω one deduces that there are no interior local
extremizers of f and all the local ones lie on ∂Ω.

(2) Clearly ∂Ω decomposes into 3 pieces, C1 := {(x, y) ∈ R2 : y = ln(x), x ∈ [1, e]}, C2 := {(e, y) ∈
R2 : 0 ≤ y ≤ ln(e) = 1} and C1 := {(x, 0) ∈ R2 : x ∈ [1, e]}. One cannot use the Lagrangian theory
with equality constraints on the 3 pieces of the boundary, because to describe these pieces one needs
inequalities as well. This situation can be handled by the so-called KKT theory, which was not the
subject of this exam.

Let us optimize f on each Ci, i ∈ {1, 2, 3}. On C1 the function f can be written as g1(x) = ex ln x

which has to be optimized on [1, e]. Clearly g′1(x) = ex ln x(lnx + 1) > 0 for all x ∈ [1, e], thus g1 is
strictly increasing on this interval, having its global minimizer at x = 1, where g1(1) = 1 and its global
maximizer at x = e, where g1(e) = ee. Hence the global minimizer of f on C1 is the point (1, 0) and the
global maximizer is (e, 1) with the corresponding values.

On C2 f reduces to the function g2 = eey which has to be optimized on [0, 1]. Clearly g′2(y) = eeey > 0
for all y ∈ [0, 1], which means that g2 is strictly increasing on [0, 1], hence its global minimizer and
maximizer are y = 0 and y = 1 respectively, with the optimal values g2(0) = 1 and g2(1) = ee. The
corresponding global minimizer and maximizer of f are the points (e, 0) and (e, 1) respectively.

Similarly on C3 the problem is to optimize g3(x) = 1 on the interval [1, e], for which all the points are
both global minimizers and maximizers. The same is true for f on C3.

(3) By (1) one knows that the global extremizers lie on ∂Ω. In (2) we computed all the global
extremizers on each piece of the boundary. Hence one has to select the points from the selected ones in
(2) which have the smallest and the biggest value. We see that the global maximizer of f is unique and
it is the point (e, 1), with maximal value f(e, 1) = ee. There are infinitely many global maximizers which
are the points (x, 0), where x ∈ [1, e]. The minimal value of the function is 1.
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