
Math 164-1: Optimization
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Name (use a pen):

Student ID (use a pen):

Signature (use a pen):

Rules:

• Duration of the exam: 50 minutes.

• By writing your name and signature on this exam paper, you attest that you are the person indicated
and will adhere to the UCLA Student Conduct Code.

• You may use either a pen or a pencil to write your solutions. However, if you use a pencil I will
withheld your paper for two weeks after grading it.

• No calculators, computers, cell phones (all the cell phones should be turned off during the exam),
notes, books or other outside material are permitted on this exam. If you want to use scratch paper,
you should ask for it from one of the supervisors. Do not use your own scratch paper!

• Please justify all your answers with mathematical precision and write rigorous and clear proofs.
You may loose points in the lack of justification of your answers.

• Theorems from the lectures and homework may be used in order to justify your solution. In this
case state the theorem you are using.

• This exam has 3 problems and is worth 20 points. Adding up the indicated points you can observe
that there are 28 points, which means that there are 8 “bonus” points. This permits to obtain
the highest score 20, even if you do not answer some of the questions. On the other hand nobody
can be bored during the exam. All scores higher than 20 will be considered as 20 in the gradebook.

• I wish you success!
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Exercise 1 (11 points).

Let n ≥ 1 be an integer and let A ∈ Rn×n be a symmetric matrix (non necessarily positive definite)
for which all of its eigenvalues are non-zero. Let a ∈ Rn be a given vector and we consider the function
f : Rn → R, defined as

f(x) =
1

2
(x− a)>A2(x− a),

where A2 = AA.

(1) Using first and second order optimality conditions show that f has a unique global minimizer on
Rn and determine this optimizer. Denote it by x∗.

(2) Write the updates in the steepest descent algorithm (i.e. gradient descent with optimal step size)
starting from a point x0 ∈ Rn to approximate the optimizer x∗ of f that has been determined in
(1). Determine the step size αk in each step.

(3) Imagine that one wants to use a fixed step gradient algorithm too, to approximate x∗. Which is
maximal range for the step size α in terms of the eigenvalues of A that ensures global convergence
for the algorithm?

(4) Give an example of A ∈ R2×2 diagonal matrix that has a zero and a non-zero eigenvalue. Take
a ∈ R2. Determine the global minimizers of f in R2 in this case. What can we say about the
uniqueness of them?

(5) Explain what will happen if we want to proceed with a fixed step size gradient algorithm for (4).
Does an algorithm like this converge globally? If yes, for which values of the step size α and to
which limit point x∗?

(6) Explain what is the major difference between the cases when A has at least one zero eigenvalue and
when it does not, from the point of view of the gradient descent algorithms.
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Exercise 2 (8 points).

Let us consider the function f : (0,+∞)→ R defined as

f(x) = x− ln(x),

where ln denotes the natural logarithm of base e.

(1) Using eventually first and second order optimality conditions, show that f has a unique minimizer
on (0,+∞). Denote this by x∗.

In what follows, we are aiming to approximate x∗ from (1) using Newton’s algorithm.

(2) Write the updates in Newton’s algorithm used to approximate the minimizer of f above. Denote
the sequence of iterates by (xk)k≥0. Determine the biggest range for the initial guess x0 > 0 for
which one has after one iteration that x1 > 0. Denote this range by I.

(3) Let ε > 0 be a given error term. Explain why is the condition |1−xk| ≤ ε a good stopping condition
for Newton’s algorithm approximating x∗.

(4) Show that for all x0 ∈ I (where I is determined in (2)) the sequence (xk)k≥0 is converging to x∗.
Hint: compute for instance the error 1−x1 in terms of x0, then write this relation also for xk+1 and
xk. Other possibilities, like showing directly that |xk − x∗| → 0 as k → +∞ can be also considered.

(5) Propose a modification of the above algorithm that will ensure that it is converging also if x0 ∈
(0,+∞) \ I. Hint: you may think to introduce a step size in the algorithm, which is exactly 1 in
the usual Newton algorithm.
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Exercise 3 (9 points).

We aim to compute an approximation of
√

2. For this, we construct a sequence (xk)k≥0 that converges
to one of the solutions of the equation x2 = 2.

(1) Suppose we have two initial guesses x0, x1 ∈ R. Write down the definition of the sequence (xk)k≥0
constructed by the secant method. Write the formula in a compact form.

(2) Setting x0 = 0 and x1 = 1, compute x2, x3 and x4 using the algorithm given in (1). What do you
observe?

(3) Give two initial guesses x0 and x1 for which the sequence constructed in (1) tends to converge to
−
√

2 instead. Justify your choice.

(4) Explain analytically and geometrically the behavior of the algorithm described in (1), when one
chooses x0 = a and x1 = −a for some a ∈ R as initial guesses.

(5) Give a sufficient condition for the initial guesses x0 and x1 (discuss also the geometrical intuition
behind it) that guarantees that the algorithm described in (1) has a tendance to converge to

√
2.

Notice: by the notion of tendance of convergence we mean that we have a strong belief that the algorithm
converges and this is supported by a couple of iterations and the geometrical intuition behind. You do
not need to show actual convergences in this exercise!
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