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Exercise 1 (11 points).

Let n ≥ 1 be an integer and let A ∈ Rn×n be a symmetric matrix (non necessarily positive definite)
for which all of its eigenvalues are non-zero. Let a ∈ Rn be a given vector and we consider the function
f : Rn → R, defined as

f(x) =
1

2
(x− a)>A2(x− a),

where A2 = AA.

(1) Using first and second order optimality conditions show that f has a unique global minimizer on
Rn and determine this optimizer. Denote it by x∗.

(2) Write the updates in the steepest descent algorithm (i.e. gradient descent with optimal step size)
starting from a point x0 ∈ Rn to approximate the optimizer x∗ of f that has been determined in
(1). Determine the step size αk in each step.

(3) Imagine that one wants to use a fixed step gradient algorithm too, to approximate x∗. Which is
maximal range for the step size α in terms of the eigenvalues of A that ensures global convergence
for the algorithm?

(4) Give an example of A ∈ R2×2 diagonal matrix that has a zero and a non-zero eigenvalue. Take
a ∈ R2. Determine the global minimizers of f in R2 in this case. What can we say about the
uniqueness of them?

(5) Explain what will happen if we want to proceed with a fixed step size gradient algorithm for (4).
Does an algorithm like this converge globally? If yes, for which values of the step size α and to
which limit point x∗?

(6) Explain what is the major difference between the cases when A has at least one zero eigenvalue and
when it does not, from the point of view of the gradient descent algorithms.

Solutions
Notice first the since A is symmetric, so is A2. Moreover since A has non-zero eigenvalues, A2 has all

its eigenvalues positive, hence it is a positive definite matrix. Let us define Q := A2. Observe also that
the function can be rewritten as

f(x) =
1

2
x>Qx− x>b+ c,

where we set b := Qa and c :=
1

2
a>Qa. Mind that in the optimization problem the constant c does not

play any role.
(1) Since the optimization problem is without constraints, the first order necessary optimality con-

dition for the minimizer reads as ∇f(x∗) = 0, that is Qx∗ = b, from where x∗ = Q−1b = Q−1Qa = a.
All these computations are meaningful, because Q−1 exists. The second order sufficient condition of
minimality (since ∇f(x∗) = 0) reads as D2f(x∗) = Q = A2 > 0, which is true, hence x∗ = a is the
unique global minimizer of f on Rn.

(2) The updates in the steepest descent starting from x0 are

xk+1 = xk − αk∇f(xk) = xk − αk(Qxk − b),

where αk = argminα∈Rf(xk − α∇f(xk)) and using the formula derived during the lecture, one has

αk =
‖∇f(xk)‖2

∇f(xk)>Q∇f(xk)
.

(3) For the fixed step size algorithm global convergence is equivalent (as we discussed during the

lectures) to 0 < α <
2

λmax(Q)
. The maximal eigenvalue of Q actually can be written in terms of the
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maximal (in absolute value) eigenvalue of A, i.e. λmax(Q) = max{λ2i : i = 1, . . . , n}, where the λi’s are
the eigenvalues of A counted with multiplicity.

(4) An example for such a matrix is

A =

(
γ 0
0 0

)
,

where γ 6= 0. The other option is, when the elements on the main diagonal are exchanged. In this case

Q = A2 =

(
γ2 0
0 0

)
,

and the function can be written as f(x1, x2) =
1

2
γ2(x1 − a1)2, hence it is independent of the second

variable. Setting ∇f(x) = 0 one finds that the candidates for the optimizers are x∗ = (a1, x2), where
x2 ∈ R is arbitrary. Since the function is independent of the second variable and f(a1, x2) = 0 ≤ f(y1, y2)
for any (y1, y2) ∈ R2, one has that all of them are global minimizers that have the same objective function
value, hence they are not unique.

(5) In the case of (4) the problem is reduced to a 1D problem, hence a fixed step size gradient

algorithm converges globally if and only if the step size α is in the range 0 < α <
2

γ2
. From the 2D point

of view what is happening is the following: choosing any initial guessx0 = (x01, x
0
2), since f is independent

of the second variable (hence the second coordinate of its gradient is always zero), during each update
in xk+1 = (xk+1

1 , xk+1
2 ) the second coordinate xk+1

2 remains unchanged. Hence the algorithm actually
converges to a global minimizer namely the one (a1, x

0
2).

(6) If some of the eigenvalues of A are zero, Q = A2 will have also the corresponding eigenvalues 0. On
the other hand, since Q is symmetric, it is diagonalizable, so we can see it up to a change of coordinates
as a diagonal matrix with the eigenvalues on the main diagonal. As we have seen in (5), the coordinates
(in the new system of coordinates, if Q was not diagonal at the first place) corresponding to the zero
eigenvalues are unaffected by the gradient algorithms. And the dimension of the problem can be reduced
by the number of zero eigenvalues. While for positive definite Q, i.e. if A does not have zero eigenvalues,
the problem is full dimensional. This is a major difference between the two cases.
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Exercise 2 (8 points).

Let us consider the function f : (0,+∞)→ R defined as

f(x) = x− ln(x),

where ln denotes the natural logarithm of base e.

(1) Using eventually first and second order optimality conditions, show that f has a unique minimizer
on (0,+∞). Denote this by x∗.

In what follows, we are aiming to approximate x∗ from (1) using Newton’s algorithm.

(2) Write the updates in Newton’s algorithm used to approximate the minimizer of f above. Denote
the sequence of iterates by (xk)k≥0. Determine the biggest range for the initial guess x0 > 0 for
which one has after one iteration that x1 > 0. Denote this range by I.

(3) Let ε > 0 be a given error term. Explain why is the condition |1−xk| ≤ ε a good stopping condition
for Newton’s algorithm approximating x∗.

(4) Show that for all x0 ∈ I (where I is determined in (2)) the sequence (xk)k≥0 is converging to x∗.
Hint: compute for instance the error 1 − x1 in terms of x0, then write this relation also for xk+1

and xk.

(5) Propose a modification of the above algorithm that will ensure that it is converging also if x0 ∈
(0,+∞) \ I. Hint: you may think to introduce a step size in the algorithm, which is exactly 1 in
the usual Newton algorithm.

Solution
(1) Using the first order necessary optimality condition, if x∗ is a minimizer, then 1−1/x∗ = 0, hence

the only candidate in the interior is x∗ = 1. The second order sufficient condition (since x∗ = 1 is an
interior point and f ′(x∗) = 0) f ′′(1) = 1 > 0 implies that x∗ = 1 is a unique strict local minimizer. On
the boundary one cannot have other local minimizers, since lim

x↓0
f(x) = +∞ and lim

x→+∞
f(x) = +∞ and

f is decreasing from 0 to 1, then it is increasing towards +∞. Thus x∗ is actually a global minimizer as
well.

(2) After choosing x0 > 0, we construct the sequence with the recursive relation

xk+1 = xk − f ′(xk)/f ′′(xk) = 2xk − (xk)2,

provided f ′′(xk) 6= 0.
One aims to have x1 = 2x0− (x0)2 > 0, which determines the range (since x0 > 0) for x0 ∈ (0, 2) = I.
(3) Since the unique minimizer is x∗ = 1, the condition |1−xk| ≤ ε will result in an approximation of

1 by an error ε > 0, thus it is reasonable to stop the algorithm, once this approximation is achieved. On

the other hand, since f ′(xk) =
xk − 1

xk
and in general the condition |f ′(xk)| ≤ ε will give a point that is

very close to the minimizer, the condition |1− xk| ≤ ε will imply that |f ′(xk)| ≤ ε/xk and we expect for
xk not to become very small of very large, thus this implies once more the good choice of this condition.

(4) By the formula of the update one has 1 − xk+1 = 1 − 2xk + (xk)2 = (1 − xk)2, and since this is
true for every index k > 0, one has (also passing to absolute values)

|1− xk+1| = |1− x0|2
k+1

,

and since x0 ∈ I implies 0 < x0 < 2, which means that |1 − x0| < 1, passing to the limit in the above
equality one obtains that the algorithm converges exponentially fast.

(5) Clearly, the problem with initial guesses x0 outside of I is that after one iteration x1 becomes
negative, for which values the function is not defined. To overcome this issue, we introduce a step size
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αk in the algorithm that ensures that we do not go outside of the domain of f . The modified algorithm
reads as follows

xk+1 = xk − αkf ′(xk)/f ′′(xk) = xk − αk((xk)2 − xk),

where we chose αk > 0 to be small enough that prevents that xk+1 ≤ 0 if xk ∈ (0,+∞) \ I or αk = 1 if

xk is already in I. The condition xk+1 > 0 implies that αk has to be chosen such that 0 < αk <
1

xk − 1
if xk > 2 or αk = 1 if xk ∈ I. This will result in a convergent algorithm, since in a finite number of steps
we achieve that 0 < xk < 2, after which we know that the algorithm converges for all starting points in
I.
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Exercise 3 (9 points).

We aim to compute an approximation of
√

2. For this, we construct a sequence (xk)k≥0 that converges
to one of the solutions of the equation x2 = 2.

(1) Suppose we have two initial guesses x0, x1 ∈ R. Write down the definition of the sequence (xk)k≥0
constructed by the secant method. Write the formula in a compact form.

(2) Setting x0 = 0 and x1 = 1, compute x2, x3 and x4 using the algorithm given in (1). What do you
observe?

(3) Give two initial guesses x0 and x1 for which the sequence constructed in (1) tends to converge to
−
√

2 instead. Justify your choice.

(4) Explain analytically and geometrically the behavior of the algorithm described in (1), when one
chooses x0 = a and x1 = −a for some a ∈ R as initial guesses.

(5) Give a sufficient condition for the initial guesses x0 and x1 (discuss also the geometrical intuition
behind it) that guarantees that the algorithm described in (1) has a tendance to converge to

√
2.

Notice: by the notion of tendance of convergence we mean that we have a strong belief that the algorithm
converges and this is supported by a couple of iterations and the geometrical intuition behind. You do
not need to show actual convergences in this exercise!

Solution
(1) Introducing the function f : R→ R, defined as f(x) = x2−2, the updates using the secant method

for the roots of f read as

xk+1 = xk − (xk − xk−1)
f(xk)

f(xk)− f(xk−1)
,

provided f(xk) 6= f(xk−1). This can be written in a compact form as

xk+1 = xk − (xk)2 − 2

xk + xk−1
=

2 + xk−1xk

xk−1 + xk
.

(2) Simple computations yield x2 = 2, x3 = 4/3 ≈ 1.33 and x4 = 7/5 = 1.4. The observation is that
we start to get closer to

√
2 ≈ 1.4142.

(3) Since the problem is symmetric to the origin, one expects that the choice x0 = 0 and x1 = −1
produces a sequence that tends to converge to −

√
2. Indeed, computing the first few iterations in this

case one obtains that x2 = −2, x3 = −4/3 ≈ −1.33 and x4 = −7/5 = −1.4
Notice also using the formula for the update that once we achieved two consecutive terms that are

nonpositive, the rest of them will remain nonpositive as well (because xk−1xk ≥ 0 and xk−1 + xk ≤ 0 if
both terms are nonpositive). Thus for any two nonpositive initial guesses the algorithm would have the
tendance to converge to −

√
2.

(4) Analytically it is clear that in this case x2 cannot be well defined because we would divide by zero.

Geometrically what is happening is the following: remember that
f(xk)− f(xk−1)

xk − xk−1
= xk+xk−1 is used to

approximate f ′(xk) in Newton’s algorithm, that was the initial purpose to introduce the secant method.
For k = 1, even if x0 = a could be far from x1 = −a, still this approximation would be x1 + x0 = 0,
meaning that the slope of the “approximated” tangent line would be 0. This would mean that it is parallel
to the Ox−axes hence one cannot define the next term in the iteration (that is defined as the intersection
of this tangent line with the Ox−axes).

(5) Once again, the problem is completely symmetric to the origin, meaning that the two solutions
are −

√
2 and

√
2. Thus, as a first intuition, one should achieve after some iterations that two consecutive

terms in the sequence to be nonnegative. Once this is achieved, using the formula for the update, it is
sure that all the upcoming terms will be nonnegative, so one might hope for convergence to

√
2.
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Actually assuming that the algorithm converges to a number `, passing to the limit is the formula for
xk+1, one obtains the equation for ` :

` =
2 + `2

2`
,

i.e. `2 = 2 and because all the terms of the sequence after a certain point are nonnegative would imply
that ` =

√
2. Thus, indeed the intuition to have two consecutive terms that are nonnegative could result

in a convergent algorithm that if converging cannot converge elsewhere but to
√

2. This reasoning implies
that a good sufficient condition is to choose the two initial guesses nonnegative and distinct.

Other sufficient conditions could be considered as well (also involving initial guesses with opposite
signs), however the precise conditions for these could be more technical to describe.
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