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Rules:

• Duration of the exam: 3 hours.

• By writing your name and signature on this exam paper, you attest that you are the person indicated
and will adhere to the UCLA Student Conduct Code.

• No calculators, computers, cell phones (all the cell phones should be turned off during the exam),
notes, books or other outside material are permitted on this exam. If you want to use scratch paper,
you should ask for it from one of the supervisors. Do not use your own scratch paper!

• Please justify all your answers with mathematical precision. You may lose points in the lack of
justification of your answers.

• Theorems from the lectures may be used in order to justify your solution. In this case state the
theorem you are using.

• This exam has 5 problems and is worth 20 points. Adding up the indicated points you can
observe that there are 25 points, which means that there are 5 “bonus” points. This permits
to obtain the highest score 20, even if you do not answer some of the questions. Hence you do not
have to worry if you cannot solve some problem. All scores higher than 20 will be considered as 20
in the gradebook.

• I wish you success!
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Exercise 1 (Two dimensional linear programs – 4 points).

Let f : R2 → R defined as f(x1, x2) = −6x1 + 3x2. Using geometrical arguments we aim to solve the
two linear programs associated to f,

min f(x1, x2)
s.t. (x1, x2) ∈ Ω

(P1)

and
max f(x1, x2)
s.t. (x1, x2) ∈ Ω,

(P2)

where Ω :=
{

(x1, x2) ∈ R2 : −2x1 + x2 ≥ 5; 5x1 + 3x2 ≥ 1; 2x1 + 3x2 ≤ 7
}
. Draw the feasible set Ω,

then determine the solutions of (P1) and (P2) giving also the values of f at these points. Justify your
answer.
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Exercise 2 (6 points).

Let us consider the following linear program

max 2x1 − 4x2 + 3x3

s.t.


3x1 + x3 ≥ −12
x1 + 2x3 ≤ 7
x1 + 2x2 + 4x3 = 10
x1, x2, x3 ≥ 0

(LP)

(1) Write (LP) in the standard form.

(2) Transform the standard linear program into a canonical form.

(3) Use the simplex algorithm to solve (LP) starting with the previously obtained canonical tableau.
At each step determine the reduced cost coefficients and the basic feasible solutions. Determine the
optimal basic solution and the value of the objective function at this point.

(4) Determine the dual problem associated to the original (LP). Would it be easier to solve this
problem? Explain why or why not?

Hint: note that you have both inequality and equality constraints, so writing the dual consider the
equality constraint as two inequality constraints.
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Exercise 3 (5 points).

Let us consider f : R2 → R defined as

f(x1, x2) = −x1 − 2x2 − 2x1x2 +
1

2
x21 +

1

2
x22

and the triangle defined as Ω :=
{

(x1, x2) ∈ R2 : x1 ≥ 0; x2 ≥ 0; x1 + x2 ≤ 1
}
. We aim to find the local

minimizers and maximizers of f on Ω.

(1) Explain why does a global minimizer and maximizer of f on Ω exist!

(2) Show that no local minimizers and local maximizers can exist in the interior of Ω.

(3) Determine the global minimizers and maximizers of the functions g(x) =
1

2
x2 − x and h(x) =

1

2
x2 − 2x when x ∈ [0, 1].

(4) Using eventually the theory of Lagrange multipliers, find the global minimizers and maximizers of
f on Ω.

Hint for (4): explain why is enough to introduce only one Lagrange multiplier, associated to only one
part of the boundary, then work with only this multiplier.

4



Exercise 4 (5 points).

Let C := {(x1, x2) ∈ R2 : x21 + x22 ≤ 1; x2 ≥ 0} be the unit half ball in R2. We aim to write down a
formula for the orthogonal projection of an arbitrary point (a1, a2) ∈ R2 onto C. With other words for
(a1, a2) ∈ R2 given, we are looking for (x∗1, x

∗
2) ∈ C such that the distance between (a1, a2) and (x∗1, x

∗
2)

is minimal. Hence the above problem is equivalent to

min
(x1,x2)∈C

{
1

2
(x1 − a1)2 +

1

2
(x2 − a2)2

}
(1)

Why does an optimizer exist for any (a1, a2) ∈ R2? You can admit here that any local minimizer of
the above problem is a global minimizer. Using the theory of KKT multipliers solve the above problem,
discussing the cases w.r.t. the geometrical location of the point (a1, a2) ∈ R2. Is the optimizer unique for
a given (a1, a2)? Drawing a picture, explain geometrically as well what you obtained.

Hint: you should discuss 5 cases w.r.t. the geometrical location of (a1, a2).
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Exercise 5 (5 points).

Let f : R2 → R given by

f(x1, x2) =
1

2
ax21 +

1

2
bx22,

where 0 < a < b are two given reals. We consider the problem

min
(x1,x2)∈R2

f(x1, x2). (2)

(1) Show that there exists a unique optimizer (x∗1, x
∗
2) ∈ R2 of f. Determine this point, using first and

second order optimality conditions.

(2) Write down the Newton algorithm to find (x∗1, x
∗
2) and show that it is converging in one step for

any initial condition (x01, x
0
2) ∈ R2.

(3) Write down the gradient descent algorithm (steepest descent) with optimal step size to find the
optimizer (x∗1, x

∗
2).

- Write (xk+1
1 , xk+1

2 ) explicitly in terms of (xk1 , x
k
2) and the optimal step size αk > 0.

- Write a condition for αk to be satisfied in terms of (xk1 , x
k
2) and (xk+1

1 , xk+1
2 ).

- Let us assume that at some step k > 0 one has ∇f(xk1 , x
k
2) 6= 0. Show that the algorithm is

converging if and only if either xk1 = 0 or xk2 = 0.

- Give a sufficient condition for (x01, x
0
2) 6= (0, 0) that implies the convergence of the algorithm.

In how many steps can we reach the optimizer in this last case?
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