
Math 164-1: Optimization
Instructor: Alpár R. Mészáros

Midterm, October 16, 2015 – Solutions

Exercise 1 (12 points).

Let Ω ⊂ R3, Ω :=
{
x = (x1, x2, x3) ∈ R3 : −1/2 ≤ xi ≤ 1/2, i ∈ {1, 2, 3}

}
be a unit cube in R3. Let us

define the function f : R3 → R as f(x1, x2, x3) = x1x2 + x2x3 + x3x1. We consider now the optimization
problem

max
x∈Ω

f(x) (1)

Answer the following questions, showing full justification!

(1) Why does a maximizer exist in Problem 1?

(2) Why is the function f of class C2(R3)? Compute the gradient ∇f(x) and the Hessian D2f(x) for
an arbitrary point x ∈ R3.

(3) Select all the candidates from the interior of Ω that could be local maximizers of f . Decide whether
the selected candidates are local maximizers or not.

(4) Consider the point y = (1/2, 0, 0) ∈ Ω. Is y an interior point of Ω? Characterize all the feasible
directions e = (e1, e2, e3) ∈ R3 at y (a picture could help). Is y a (strict) local maximizer of f?

(5) Consider the point z = (1/2, 1/2, 1/2) ∈ Ω. Is z an interior point of Ω? Characterize all the feasible
directions e = (e1, e2, e3) ∈ R3 at z. Is z a (strict) local maximizer of f? What is the value of f at
z?

(6) Is z from (5) a global maximizer of f? Determine another point t ∈ Ω, t 6= z which is a global
maximizer of f .

Solution

(1) Since f is continuous on R3 (as a second order polynomial) and Ω is a compact set (closed and
bounded) in R3, Weierstrass’ theorem ensures the existence of minimizers and maximizers of f over
Ω.

(2) Since f is a second order polynomial defined on R3, it is of class C∞(R3), hence also C2(R3).
Moreover ∇f(x) = (x2 + x3; x1 + x3; x1 + x2) and

D2f(x) =

 0 1 1
1 0 1
1 1 0


are continuous functions on R3, which proves once again that f ∈ C2(R3).

(3) The candidates x = (x1, x2, x3) ∈ int(Ω) for maximizers should satisfy the first order optimality
condition ∇f(x) = 0. This is equivalent to x = (0, 0, 0) = 0 which is clearly an interior point of Ω.
Since the Hessian D2f(0, 0, 0) is indefinite (for e = (e1, e2, e3) ∈ R3, e 6= 0 one has e · D2f(0)e =
2(e1e2 + e2e3 + e3e1) which is negative for instance for (−1, 1, 0) and positive for (1, 1, 0). On the
other hand the eigenvalues of D2f(0) are −1,−1 and 2 and the change of sign for the eigenvalues
also shows that the matrix is indefinite), the interior point is neither a local minimizer nor a local
maximizer.



(4) y ∈ ∂Ω. By definition e = (e1, e2, e3) ∈ R3 is a feasible direction at y if there exists ε0 such that
y + εe ∈ Ω for all ε ∈ [0, ε0]. By this, if e is a feasible direction one should have y + εe ∈ Ω for ε > 0
small enough. This means that one should have

(1/2 + εe1, εe2, εe3) ∈ Ω.

This clearly implies (since ε > 0 and using the definition of Ω) that e1 ≤ 0 and e2, e3 ∈ R.

On the other hand ∇f(y) = (0, 1/2, 1/2) and for all feasible directions e ∈ R3 described in the above
line one should have the first order necessary optimality condition ∇f(y)·e ≤ 0, i.e. 1/2e2+1/2e3 ≤
0. By the characterization of the feasible directions at y, e2 and e3 can be arbitrary, so the condition
does not hold (if e2 = 1, e3 = 0 one has 1/2e2 + 1/2e3 = 1/2 ≥ 0). Hence y is not a local maximizer
of f over Ω.

(5)-(6) z ∈ ∂Ω. Using the definition of the feasible directions e = (e1, e2, e3) ∈ R3 at z (as in the
previous point), one should have z + εe ∈ Ω for ε > 0 small. This is equivalent to say that
(1/2 + εe1, 1/2 + εe2, 1/2 + εe3) ∈ Ω which by the definition of Ω and by the fact that ε > 0 implies
that e is a feasible direction iff e1 ≤ 0, e2 ≤ 0 and e3 ≤ 0.

On the other hand ∇f(z) = (1, 1, 1) and the first order optimality condition for z (to be a local
maximizer) is ∇f(z) · e ≤ 0 for all feasible directions e ∈ R3. This is equivalent to e1 + e2 + e3 ≤ 0,
which by the above characterization holds true. Hence z is a good candidate for a local minimizer.

It is clear that f(z) = 3/4. On the other hand f(x) = x1x2 + x2x3 + x3x1 ≤ |x1||x2| + |x2||x3| +
|x3||x1| ≤ 3/4 for all x = (x1, x2, x3) ∈ Ω, with other words 3/4 is an upper bound for f on Ω. And
since f(z) = 3/4 (i.e. the upper bound is achieved) this implies that z is a global maximizer.

Taking a neighborhood point of z in Ω, this can be described as (1/2 − ε1, 1/2 − ε2, 1/2 − ε3)
for some ε1, ε2, ε3 ≥ 0 small reals (not all of them 0 at once). It is clear that 3/4 = f(z) >
f(1/2− ε1, 1/2− ε2, 1/2− ε3) = (1/2− ε1)(1/2− ε2) + (1/2− ε2)(1/2− ε3) + (1/2− ε3)(1/2− ε1),
just by simple comparison, which means that z is also a strict local maximizer of f .

By the very same reasoning t = (−1/2,−1/2,−1/2) ∈ Ω for instance satisfies all the properties as
z, t 6= z and f(t) = f(z) = 3/4, which means that t is a global maximizer as well, hence z is not a
strict (or unique) global maximizer.
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Exercise 2 (8 points).

Let Ω ⊂ R2, Ω :=
{
x = (x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 3

}
. We define the function f : R2 → R as

f(x1, x2) = x1x
2
2. We wish to study the local minimizers and maximizers of f on Ω. Answer the fol-

lowing questions, showing full justification!

(1) Find all the candidates for local minimizers and maximizers in the interior of Ω.

(2) Study the points selected in (1) and decide whether they are (strict) local minimizers, (strict) local
maximizers or neither of them.

(3) Characterize the feasible directions e = (e1, e2) ∈ R2 and d = (d1, d2) ∈ R2 at the points x = (1,
√

2)
and y = (−1,

√
2) and determine whether x and y satisfy the first and second order necessary

optimality conditions for maximizers and minimizers respectively!

(4) Is x a (unique) global maximizer? Is y a (unique) global minimizer?

Solution

(1) Since f ∈ C2(R2) (it is a third order polynomial), for any point x = (x1, x2) ∈ R2 one has
∇f(x) = (x2

2; 2x1x2) and

D2f(x) =

[
0 2x2

2x2 2x1

]
Since we are looking for interior points as candidates, the first order necessary condition for both
minimizers and maximizers is

∇f(x∗) = 0,

and from here the possible candidates are (x∗1, 0), where x∗1 ∈ (−
√

3,
√

3).

(2) Calculating the Hessian matrix in the above points one has

D2f(x) =

[
0 0
0 2x∗1

]
,

which is neither positive definite nor negative definite, hence one cannot uses SOSC. So, let us use
the definition of local extremizers, to check whether the selected candidates are local maximizers
or minimizers. First, take x∗1 < 0 and take ε1, ε2 ∈ R small in absolute value such that −

√
3 <

x∗1 + ε1 < 0. Now compute

f(x∗1 + ε1, ε2) = (x∗1 + ε1)ε2
2 ≤ 0 = f(x∗1, 0),

hence the points (x∗1, 0), when x∗1 ∈ (−
√

3, 0) are local maximizer that are not strict. In a similar
way one can show that all the points (x∗1, 0), where x∗1 ∈ (0,

√
3) are local minimizers that are not

strict!

The point (0, 0) is also selected, however this is neither local minimizer, not local maximizer. To
see this it is enough to use the definition and compare 0 = f(0, 0) with f(ε1, ε2) = ε1ε

2
2, where

ε1, ε2 ∈ R with small absolute value. Since ε1ε
2
2 > 0 if ε1 > 0 and ε1ε

2
2 < 0 if ε1 < 0, these facts

contradict to the definition of both local minimizers and maximizers.

(3) We use the definition of a feasible direction e ∈ R2 at the given points x, y ∈ ∂Ω. There exists
ε0 > 0 such that x + εe ∈ Ω for all ε ∈ [0, ε0]. By the definition of Ω this means that

(1 + εe1)2 + (
√

2 + εe2)2 ≤ 3.

Chose ε > 0. The above inequality is then equivalent to

2e1 + 2
√

2e2 + ε(e2
1 + e2

2) ≤ 0.
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Since ε > 0 could be arbitrary small, we should have

e1 +
√

2e2 ≤ 0,

and this inequality characterizes the feasible directions at x. Using similar computations the feasible
directions d = (d1, d2) ∈ Rd at y are characterized by the inequality

−d1 +
√

2d2 ≤ 0.

We have moreover ∇f(x) = (2; 2
√

2),∇f(y) = (2; −2
√

2) and

D2f(x) =

[
0 2

√
2

2
√

2 2

]
, D2f(y) =

[
0 2

√
2

2
√

2 −2

]
.

Let us check now the first and second order optimality conditions for x and y. For all feasible
directions e ∈ R2 and d ∈ R2 at the points x and y respectively one has

∇f(x) · e = 2(e1 +
√

2e2) ≤ 0, and ∇f(x) · d = 2(d1 −
√

2d2) = −2(−d1 +
√

2d2) ≥ 0,

where we used the characterization of e and d. Hence x satisfies the f.o.n.c. for local maximizers,
while y satisfies the f.o.n.c. for minimizers.

On the other hand
eTD2f(x)e = 4

√
2e1e2 + 2e2

2 ≤ 0

for all feasible directions for which ∇f(x) · e = 0. Indeed, this last condition says that we have to
consider only the feasible directions e = (e1, e2) such that e1 +

√
2e2 = 0. And

4
√

2e1e2 + 2e2
2 = 3

√
2e1e2 +

√
2e2(e1 +

√
2e2) = 3

√
2e1e2 ≤ 0,

where the last inequality is coming from the fact that e1 and e2 have opposite signs. Thus x satisfies
the second order necessary condition for maximizers.

Doing the same calculation and argument for y, here we need to take only those feasible directions
d = (d1, d2) for which ∇f(y) · d = 0 as well, i.e. d1 =

√
2d2. In this case

dTD2f(y)d = 4
√

2d1d2 − 2d2
2 = 3

√
2d1d2 +

√
2d2(d1 −

√
2d2) ≤ 0,

since d1 and d2 have the same sings. Thus y satisfies also the second order necessary condition for
the minimizers.

(4) Is is clear that f(x) = 2 and f(y) = −2. On the other hand by the definition of f, i.e. f(x1, x2) =
x1x

2
2, for x1 > 0 and by the constraint set, i.e. x2

1 + x2
2 ≤ 3, i.e. x2

2 ≤ 3− x2
1, one has that

f(x1, x2) = x1x
2
2 ≤ x1(3− x2

1) = 3x1 − x3
1.

The last expression clearly takes its maximum (on the set [0,
√

3]) at x1 = 1 and its value is 2. To
see this it is enough to look at the sign of the derivative of the expression 3x1−x3

1, i.e. 3− 3x2
1 ≥ 0

for x1 ∈ [0, 1] and negative for x1 ∈ (1,
√

2], which proves that the expression 3x1 − x3
1 has its

maximum at x1 = 1. So by this we have found that

f(x1, x2) ≤ 2, ∀(x1, x2) ∈ Ω.

And as f(x) = 2, one has that the point x is a global maximizer of f on Ω. It is not unique, since
f(1,−

√
2) = 2.

By a similar argument one can show that f(x1, x2) ≥ −2, ∀(x1, x2) ∈ Ω, and since f(y) = −2,
one can conclude that y is a global minimizer. However since f(−1,−

√
2) = −2, it is not unique

neither.
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Exercise 3 (5 points).

Imagine that we have 3 events that have probability p1, p2 and p3 respectively (these are real numbers
in [0, 1]), moreover we know that p3 = 1− p1 − p2 and p3 ≥ 0.

Suppose that we want to find the discrete probability distribution (p∗1, p
∗
2, p
∗
3) for these three events

in such a way that (p∗1, p
∗
2) maximizes the Shannon-type entropy (a function widely used in information

theory, statistical physics and in many other fields as a measure of uncertainty), defined as

E(p1, p2) := −p1 ln p1 − p2 ln p2,

where “ln” denotes the natural logarithm, i.e. of base e ≈ 2.71. By the structure of the events one has
always that

p∗3 = 1− (p∗1 + p∗2) (2)

that is why we do not have to optimize also in p3.
Since we are dealing with probabilities one has that p1, p2, p3 ∈ [0, 1] and by the structural condition (2)

one has to impose also the constraint that p1+p2 ≤ 1. Setting Ω := {(p1, p2) : p1, p2 ∈ [0, 1], p1 + p2 ≤ 1} ,
find all the interior local maximizers (p∗1, p

∗
2) ∈ int(Ω) of E, and determine the optimal value also for p∗3

using formula (2).
What can we say about the boundary points of Ω satisfying p1 + p2 = 1 and p1, p2 ∈ (0, 1)? Are there

any, satisfying the first order necessary conditions for maximizers?

Solution
Let us study the optimization problem for (p1, p2). If the local maximizers (p∗1, p2∗) ∈ int(Ω), then

one should have ∇E(p∗1, p
∗
2) = 0. Since ∇E(p1, p2) = (−(ln p1 + 1); −(ln p2 + 1)), the above condition

gives us that p∗1 = p∗2 = e−1. We observe that 0 < p∗1, p
∗
2 < 1 and p∗1 + p∗2 = 2e−1 < 1, hence (p∗1, p

∗
2) is in

the interior of Ω and is the only candidate to be a maximizer of E in int(Ω).
Since

D2E(p1, p2) =

[
−1/p1 0

0 −1/p2

]
,

one has that

D2E(p∗1, p
∗
2) =

[
−e 0
0 −e

]
which is a negative definite matrix. Thus both the second order necessary and sufficient conditions are
fulfilled for

(p∗1, p
∗
2) = (e−1, e−1)

and it is a local maximizer. In this case p∗3 = 1− 2/e.
We should now find the feasible directions at any point on the part of the boundary of Ω where

0 < p1, p2 < 1 and p1 + p2 = 1. Using the definition, we find that d = (d1, d2) ∈ R2 is a feasible direction
at a point described before if d1 + d2 ≤ 0.

The first order necessary condition at a boundary point like this reads as ∇E(p1, p2) · d ≤ 0, which is
equivalent to

−d1 ln p1 − d1 − d2 ln p2 − d2 ≤ 0.

By the characterization of d, one can choose for d for instance (d1,−d1), where d1 ∈ R and by definition
p2 = 1− p1. By this observations the above inequality becomes in this case

d1 ln(1/p1 − 1) ≤ 0,

that clearly does not hold true for all d1 ∈ R, hence no point from this piece of ∂Ω satisfy the first order
necessary condition for local maximizers.

In the above argument one had to exclude the point p1 = p2 = 1/2. However in this situation, taking
(d1, d2) general feasible directions, one obtains ∇E(1/2, 1/2) · d = (d1 + d2)(ln(2) − 1) ≥ 0, hence this
cannot be local maximizer either.
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