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Rules:

• Duration of the exam: 50 minutes.

• By writing your name and signature on this exam paper, you attest that you are the person indicated
and will adhere to the UCLA Student Conduct Code.

• No calculators, computers, cell phones (all the cell phones should be turned off during the exam),
notes, books or other outside material are permitted on this exam. If you want to use scratch paper,
you should ask for it from one of the supervisors. Do not use your own scratch paper!

• Please justify all your answers with mathematical precision. You may loose points in the lack of
justification of your answers.

• Theorems from the lectures may be used in order to justify your solution. In this case state the
theorem you are using.

• This exam has 3 problems and is worth 20 points. Adding up the indicated points you can
observe that there are 26 points, which means that there are 6 “bonus” points. This permits
to obtain the highest score 20, even if you do not answer some of the questions. On the other hand
nobody can be bored during the exam. All scores higher than 20 will be considered as 20 in the
gradebook.

• I wish you success!
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Exercise 1 (15 points).

(1) Describe Newton’s method in 1D to approximate the roots and local optima (minimizers/maximizers)
of C1, respectively C2 functions.

(2) We aim now to use Newton’s method to approximate the maximizer of f : [−π/2, π/2]→ R, f(x) =
cos(x). What are the optimizers of this function and what is the optimal value? Are the optimizers
local or global? What about the uniqueness of the optimizers? Why is this problem equivalent to
look for roots of the function g : [−π/2, π/2]→ R, g(x) = sin(x)?

(3) Initiate the algorithm (for g) with x0 ∈ [−π/2, π/2] such that x0 > 0. Show that x1 < 0. Show
that in general xk · xk+1 ≤ 0, for all k ∈ N.

Hint: study the sign and growth properties of the function h1 : [−π/2, π/2]→ R, h1(x) = x− tan(x).

(4) Show that if xk ∈ [−π/4, π/4] one has that |xk+1| < |xk|.

Hint: study the sign and growth properties of the function h2 : [−π/4, π/4]→ R, h2(x) = 2x− tan(x).

(5) Show that the algorithm converges for all x0 ∈ [−π/4, π/4].

(6) Show that the order of convergence (if it exists) is at least 2. Is the interval in (5) optimal, i.e.
could we choose x0 outside of this interval (but of course not outside of [−π/2, π/2]) and still have
the convergence? Justify your answer!

Hint for the convergence proof and order of convergence: a possible way is to use a second order (exact,
i.e. with reminder term) Taylor expansion for sin(0) around xk, then use the construction of the sequence

xk and try to give an upper bound for the term | sin(ξk)|
2| cos(xk)| , where ξk is between 0 and xk. Other correct

proofs are also accepted!

2



Exercise 2 (7 points).

We aim to solve numerically the following system of linear equations for x = [x1 x2]T ∈ R2: 0 1
2 0
1 2

x =

 1
2
3

 (E)

We use the notation Ax = b for (E) in the followings.

(1) Why does a solution for (E) exist? We claim that finding a solution of (E) (if there is any) is
equivalent to the problem of finding a minimizer of the function

R2 3 x 7→ 1

2
‖Ax− b‖2. (F)

Why is this the case?

(2) We will use the conjugate gradient method to solve numerically the system (E). Show that the
function in (F) is a quadratic one, generated by a positive definite, symmetric matrix from R2×2.

(3) Using the initial guess x0 = [0 0]T , develop the steps of the conjugate gradient algorithm and show
that it converges in at most 2 steps. Check if you have found indeed a solution of the system (E).
If it is the case, is it unique? Why?
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Exercise 3 (4 points).

Let f : R2 → R be a C1 convex function. We suppose that the function has a unique minimizer and
construct the following algorithm to approximate it:

xk+1 = xk − αkB∇f(xk),

where

B :=

[
b 0
0 1

]
with b ∈ R and

αk := argminα∈Rf(xk − αB∇f(xk)). (1)

At some xk during the algorithm, let us suppose to obtain ∇f(xk) = [1 2]T . What is the maximal range
for b ∈ R in this case that implies that αk ≥ 0 (where αk is given in (1))? For all b in the found range, is
the matrix B positive definite?

Hint: use the fact that the graph of a convex function lies always above its tangent plane at any point
(in particular at xk) and use the construction of xk+1 and αk.
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