Math 32B-1: Calculus of Several Variables – Homework 4 Due: January 29, 2016

Exercise 1 (From Rogawski-Adams).

- (1) Find a mapping G that maps the disk $u^2 + v^2 \leq 1$ onto the interior of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \leq 1$. Then use the change of variables formula to prove that the area of the ellipse is πab .
- (2) Compute the area of the region enclosed by the ellipse $x^2 + 2xy + 2y^2 4y = 8$ as an integral in the variables u = x + y, v = y 2.
- (3) Use the change of variables formula in three variables to prove that the volume of the ellipsoid $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$ is equal to $abc \times$ the volume of the unit sphere.

Exercise 2 (From Rogawski-Adams).

Sketch the region D and integrate f(x, y) over D using polar coordinates.

- (1) $f(x,y) = y(x^2 + y^2)^3; y \ge 0, x^2 + y^2 \le 1.$
- (2) $f(x,y) = e^{x^2 + y^2}$; $x^2 + y^2 \le R$, R > 0 is given.
- (3) $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \sqrt{x^{2}+y^{2}} \, \mathrm{d}x \, \mathrm{d}y$ $\int_{0}^{2} \int_{0}^{\sqrt{3}x} \sqrt{x^{2}+y^{2}} \, \mathrm{d}x \, \mathrm{d}y$

(4)
$$\int_0 \int_x y \, \mathrm{d}y \, \mathrm{d}x$$

Exercise 3 (From Rogawski-Adams).

- (1) Let W be the region above the sphere $x^2 + y^2 + z^2 = 6$ and below the paraboloid $z = 4 x^2 y^2$.
 - (a) Show that the projection W on the xy-plane is the disk $x^2 + y^2 \leq 2$.
 - (b) Compute the volume of W using polar coordinates.
- (2) Use cylindrical coordinates to calculate the integral of the function f(x, y, z) = z over the region above the disk $x^2 + y^2 \le 1$ in the xy-plane and below the surface $z = 4 + x^2 + y^2$.
- (3) Use cylindrical coordinates to calculate $\int \int \int_W f(x, y, z) \, dV$ for f(x, y, z) = xz, where $x^2 + y^2 \le 1, \ x \ge 0, \ 0 \le z \le 2.$
- (4) Use spherical coordinates to calculate the triple integral of $f(x, y, z) = x^2 + y^2 + z^2$ over the region

$$1 \le x^2 + y^2 + z^2 \le 4.$$

Exercise 4 (From Rogawski-Adams).

- (1) Use cylindrical coordinates to find the volume of a sphere of radius a from which a central cylinder of radius b has been removed, where $0 \le b \le a$.
- (2) Use cylindrical coordinates to find the volume of the region bounded below by the plane z = 1 and above by the sphere $x^2 + y^2 + z^2 = 4$.