Math 32B-1: Calculus of Several Variables – Homework 5

Due: February 5, 2016

Exercise 1 (From Rogawski-Adams).

- (1) Use spherical coordinates to find the volume of a sphere of radius 2 from which a central cylinder of radius 1 has been removed.
- For (2) and (3) use spherical coordinates to calculate the triple integral of f(x, y, z) over the given region.
 - (2) $f(x, y, z) = (x^2 + y^2 + z^2)^{-3/2}; 2 < x^2 + y^2 + z^2 < 4$
 - (3) $f(x, y, z) = 1; x^2 + y^2 + z^2 \le 4, z \ge \sqrt{x^2 + y^2}$

Exercise 2 (From Rogawski-Adams).

Use cylindrical coordinates to calculate the triple integral for the given function and region

(1)
$$f(x, y, z) = z\sqrt{x^2 + y^2}; x^2 + y^2 \le z \le 8 - (x^2 + y^2).$$

(2) $f(x, y, z) = z; 0 \le z \le x^2 + y^2 \le 9$

Express the triple integral in cylindrical coordinates

(3)
$$\int_{0}^{1} \int_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} \int_{z=0}^{4} f(x,y,z) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$

(4)
$$\int_{0}^{2} \int_{y=0}^{y=\sqrt{2x-x^{2}}} \int_{z=0}^{\sqrt{x^{2}+y^{2}}} f(x,y,z) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$

Exercise 3 (From Rogawski-Adams).

- (1) Find the total population within a 4-km radius of the city center (located at the origin) assuming a population density of $\delta(x, y) = 2000(x^2 + y^2)^{-0.2}$ people per square kilometer.
- (2) Find the total mass of the solid region W defined by $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 4$ and $x \le z \le 32 x$ (in centimeters) assuming a density of $\delta(x, y, z) = 6y \ g/cm^3$.
- (3) Find the centroid of the region bounded by $y^2 = x + 4$ and x = 4 assuming the density $\delta(x, y) = 1$.

Exercise 4 (From Rogawski-Adams).

- (1) Find the center of mass of the region bounded by $y^2 = x + 4$ and x = 0 with the density $\delta(x, y) = |y|$.
- (2) Find the center of mass of the semicircle $x^2 + y^2 \le R^2$ and $y \ge 0$ assuming the density $\delta(x, y) = y$.
- (3) Find the center of mass of the cylinder of radius 2 and height 4 and mass density e^{-z} , where z is the height above the base.