Math 32B-1: Calculus of Several Variables – Homework 8 Due: February 26, 2016

Exercise 1.

Review the exercises from Homework 5, 6, 7, this is a first source of preparation for the midterm.

Exercise 2 (From Rogawski-Adams).

- (1) What is the outward-pointing unit normal to the sphere of radius 3 centered at P = (2, 2, 1)?.
- (2) Show that $G(r, \theta) = (r \cos \theta, r \sin \theta, 1 r^2)$ parametrizes the paraboloid $z = 1 x^2 y^2$. Describe the grid curves of this parametrization.
- (3) Let S = G(D), where $D = \{(u, v) : u^2 + v^2 \le 1; u \ge 0, v \ge 0\}$ and G(u, v) = (2u + 1, u v, 3u + v). Compute the surface area of S.

Exercise 3 (Based on Rogawski-Adams).

Compute T_u , T_v and N(u, v) for the parametrized surfaces at the given points.

- (1) $G(u,v) = (u^2 v^2, u + v, u v)$ at (u,v) = (2,3).
- (2) $G(r,\theta) = (r\cos\theta, r\sin\theta, 1 r^2)$ at $(r,\theta) = (1/2, \pi/4)$.
- (3) $G(u, v) = (u \cos v, u \sin v, u)$ at $(u, v) = (1/4, \pi/2)$.
- (4) $G(u, v) = (u, v^3, u + v)$ at (u, v) = (1, 1).

Exercise 4.

Compute the integrals $\int \int_{S_i} f_i(x, y, z) \, dS$ where $S_i = G(D_i)$ are the surfaces given by the parametrizations from previous exercise, point $(i), i \in \{1, \dots, 4\}$ and the functions and D_i are the followings:

- (1) $f_1(x, y, z) = \mathbf{y}$ and $D_1 = [1, 2] \times [0, 1]$.
- (2) $f_2(x, y, z) = x^2 + y^2 + z^2$ and $D_2 = [1, 2] \times [0, \pi/2].$
- (2) $f_3(x, y, z) = (x^2 y^2)z$ and $D_3 = [0, 2] \times [0, \pi/4].$
- (2) $f_4(x, y, z) = \mathbf{y}$ and $D_4 = [1, 2] \times [1, 2]$.