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Exercise 1 (6 points).

(1) Compute

∫ ∫ ∫
D

(x+ y) dV, where D := {(x, y, z) ∈ R3 : (x− 1)2 + y2 + z2 ≤ 4}.

Hint: you may use spherical coordinates.

(2) Find the total mass of a solid right circular cone with radius 3 and height 4, for which the density
of each point of it is given by the distance from the base.

Hint: you may use cylindrical coordinates, and mind that the radius is always depending on the actual
height.

Solutions
(1) Since D is a ball centered at (1, 0, 0) with radius 2, we use the spherical coordinates x = 1 +

r sinϕ cos θ, y = r sinϕ sin θ and z = r cosϕ, where r ∈ [0, 2], θ ∈ [0, 2π] and ϕ ∈ [0, π]. Since the
Jacobian determinant is the same as for the usual spherical coordinates, one obtains that∫ ∫ ∫

D

(x+ y) dV =

∫ 2

0

∫ 2π

0

∫ π

0

(1 + +r sinϕ cos θ + r sinϕ sin θ)r2 sinϕdϕdθ dr

=

∫ 2

0

∫ 2π

0

∫ π

0

(r2 sinϕ+ r3 sin2 ϕ cos θ + r3 sin2 ϕ sin θ) dϕdθ dr

=

∫ 2π

0

∫ π

0

((8/3) sinϕ+ 4 sin2 ϕ cos θ + 4 sin2 ϕ sin θ) dϕdθ

=
32π

3

(2) The distance of any point (x, y, z) from the base is exactly the height z, hence the total mass of

the cone denoted by C is given by

∫ ∫ ∫
C

z dV. We use cylindrical coordinates to describe C. For this

one has to compute first the radius as a function of the height z, this is r(z) =
3

4
(4 − z). Hence the

integral becomes∫ ∫ ∫
C

z dV =

∫ 4

0

∫ 2π

0

∫ r(z)

0

zr dr dθ dz = π

∫ 4

0

zr(z)2 dz =
9π

16

∫ 4

0

z(4− z)2 dz

=
9π

16

∫ 4

0

(16z − 8z2 + z3) d =
9π

42
44
(

1

2
− 2

3
+

1

4

)
=

1

12
π3242 = 12π
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Exercise 2 (7 points).

Alice decided that she goes hiking. The path that she has chosen can be described analytically in R2

as follows. She is starting at the point a = (−1, 0) and goes up on the upper half part of the unit circle
(centered at the origin) until (0, 1) then she goes down on the same circle until b = (1, 0). From b she then
goes up on a straight line to the point c = (2, 1). Then she continues straight to the point d = (3, 1) and
lastly she descends on the straight line to e = (4, 0). We assume that on the whole road she is affected
only by the gravitational field, which is given by the constant vector field G = (0,−2).

(1) Give a parametrization for each piece of path (you have 4 pieces: the circular, the straight up, the
horizontal and the straight down ones) such that Alice has constant speed on each piece of path,
and she needs π time units for the circular piece, and 1 time unit on any other piece.

(2) Compute the total work she needs to perform in order to arrive from a to e on the path with the
parametrization described in (1) and knowing that she is only affected by the gravitational field G.

Hint: you may use the additive property of line integrals with respect to concatenations of curves. You
may use any other properties of the line integrals or the geometry of the problem in your solution.

(3) When she arrives to the point e, she meets Ben, who decided to hike on the very same path, but
starting from e and towards a (using the opposite parametrization of the one in (1)). Knowing
Alice’s work and the fact that he is also affected only by the same gravitational field G, what is the
total amount of work that Ben has to perform on this road? Justify your answer!

(4) After finishing the hike, Alice realizes that the gravitational field “helps her” always when she is
going downwards. Would the amount of work she performed change if she doubled her speed on
the path from d to e? If yes, how does the total amount of work change in this case? Justify your
answer!

Solutions
(1) Let us denote the four pieces of Alice’s path by Cab, Cbc, Ccd and Cde. Cab is the upper half of a

circle oriented in the inverse trigonometric sense, so its parametrization is given by

Cab = {(cos(π − t), sin(π − t)) : t ∈ [0, π]}.

This parametrization clearly uses π time units and Alice has speed 1 on this portion of path. For the
straight line segments we use the natural parametrizations

Cbc = {(1 + t, t) : t ∈ [0, 1]}; Ccd = {(2 + t, 1) : t ∈ [0, 1]}; Cde = {(3 + t, 1− t) : t ∈ [0, 1]}.

Every of these parametrizations use 1 time unit and the speed of Alice is
√

2, 1 and
√

2 on these paths
respectively.

(2) The total (net) work that she needs is given by negative of the sum of the integrals

W = −
∫
Cab

G · dr −
∫
Cbc

G · dr −
∫
Ccd

G · dr −
∫
Cde

G · dr.

We compute now all the four integrals separately:∫
Cab

G · dr =

∫ π

0

(0,−2) · (sin(π − t),− cos(π − t)) dt = 2

∫ π

0

cos(π − t) dt = −2(sin(0)− sin(π)) = 0,

which is very logical, since this part of the problem is symmetric to the y−axis, the G is constant.
For the piecewise linear path the tangential vectors are constants, these are actually the velocity of

Alice and are given by (1, 1), (1, 0) and (1,−1) respectively. Hence the integrals become∫
Cbc

G · dr =

∫ 1

0

(0,−2) · (1, 1) dt = −2;
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∫
Ccd

G · dr =

∫ 1

0

(0,−2) · (1, 0) dt = 0;

∫
Cde

G · dr =

∫ 1

0

(0,−2) · (1,−1) dt = 2.

The work on the path Cbc is clearly the opposite of the one on Cde and the one on Ccd is 0, since G is
always orthogonal to the tangent vector. Hence the total work W = 0.

(3) Since Ben plans to go on the very same path, just from e to a, he will need the opposite of the
work needed by Alice, which is 0 for him as well.

(4) If Alice would double her speed on Cde, she would need half of the time, hence the work on this
path would be just

−
∫
Cde

G · dr = −
∫ 1/2

0

(0,−2) · 2(1,−1) dt = −2.

And the total (net) work would be the same.
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Exercise 3 (7 points).

Let us consider the surface K of the cube centered at the origin with side length 3 in R3; i.e. the
surface of {(x, y, z) ∈ R3 : −3/2 ≤ x ≤ 3/2; −3/2 ≤ y ≤ 3/2; −3/2 ≤ z ≤ 3/2}.

(1) Compute the unit normal vectors N(P ) of K pointing outward, where P is an arbitrary point
varying on the 6 facets of the cube.

Hint: discuss 6 cases. You do not have to discuss the cases when P is on the edges or on the vertices of
K.

Now let us consider the intersection of K with the xy−plane, i.e. C = K ∩ {z = 0} which defines
a closed piecewise linear curve, given by the edges of the planar square centered at the origin with side
length 3. We orient C clockwise.

(2) Compute

∫
C

N · dr! Justify your answer!

(3) Let us consider the following vector field defined as F (x, y) =

(
1

(2− x)2(2− y)
,

1

(2− x)(2− y)2

)
.

Show that F a conservative vector field on a domain of R2 that should be determined! Find a
potential function of F on its domain.

(4) Compute

∫
C

F · dr and

∫
C̃

F · dr, where C was defined previously and C̃ is the line segment joining

the point (−3/2,−3/2) to (3/2, 3/2) (oriented from (−3/2,−3/2) towards (3/2, 3/2)) i.e. a diagonal
of K.

Solutions
(1) Since all the facets of the cube are parts of flat planes, the unit outward normal vectors are

constants on each of them. With the usual orientation of the xyz-system of coordinates, these are given
by

N(P ) = (0, 0, 1), on the upper facet,
N(P ) = (0, 0,−1), on the bottom facet,
N(P ) = (1, 0, 0), on the front facet,
N(P ) = (−1, 0, 0), on the back facet,
N(P ) = (0, 1, 0), on the right facet,
N(P ) = (0,−1, 0), on the left facet.

(2) By the construction N(P ) is always orthogonal to the facets, hence it is orthogonal to the tangent

vectors of the curve C as well, which gives

∫
C

N · dr = 0.

(3) F clearly is not defined, when x = 2 or y = 2, more precisely on the straight lines l1 := {(2, y) :
y ∈ R} and l2 := {(x, 2) : x ∈ R}. Hence F is well-defined and differentiable everywhere in R2 except in
the points of l1 and l2. Computing the cross partial derivatives, we find

∂F1

∂y
(x, y) =

1

(2− x)2(2− y)2
=
∂F2

∂x
(x, y),

which clearly implies that F is conservative on R2\(l1∪l2). A potential function of F is f : R2\(l1∪l2)→ R,
defined as f(x, y) =

1

(2− x)(2− y)
and F (x, y) = ∇f(x, y) for all (x, y) ∈ R2 \ (l1 ∪ l2).

(4) Since C is a closed curve and no points from l1 or l2 are contained in the interior of the region

enclosed by C, and by the fact that F is conservative there, one obtains that

∫
C

F · dr = 0. The path C̃

does not intersect with l1 or l2, hence

∫
C̃

F · dr = f(3/2, 3/2)− f(−3/2,−3/2) = 4− 4/49 = 4 · 48

49
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