Math 251A: Introductory PDE

Homework #1
Due: Wednesday, October 18th, 2017

Exercise 1 (Distributions).

Let © C R? be an open set. We consider D(Q) = C°(2) the space of all compactly supported
functions defined on © with values in R. One can put a topology on D(2) by defining limits of functions
as follows: we say that a sequence (¢, )nen in D(2) converges to ¢ € D(Q) if,

(i) there is a compact set K C Q, s.t. Unenspt(en) Uspt(v) C K;

(ii) 9%p,, — 0%p uniformly as n — oo, for each multi-index «.

A linear functional on D()) which is continuous w.r.t. the previously described topology is called
a distribution. We denote the space of distributions as D'(Q2) (i.e. the continuous topological dual of

Let T € D'(Q2) be a distribution. If U C  is an open set and T¢ = 0 for all D(U), then we say
that T vanishes on U. Let V the union of all open sets in 2 where T vanishes. Then Q\ V is called the
support of T.

(1) Show that T' € D'(f) if and only if for any K C 2 compact there exists C > 0 and N € {0} UN
such that
Tel < Clielln

for all ¢ € Dk, where D 1= {p € D(Q) : spt(¢) C K} and ||¢]|ny := max{|0%p(z)| : v € Q,|a] <
N}. If there exist N > 0 which can be used in the above description for all K C © compact (with
possibly different C), the smallest of these is called the order of T. If no such N exists, then we
call T of infinite order.

(2) Give examples of distribution with order 2 and co. Show that T € D’(Q) is of order 0, if and only
if it is a finite signed measure on 2.

(3) Let T € D'(Q) such that T > 0 for all ¢ € D(2), ¢ > 0. Show that T is a finite positive measure
on .

(4) Show that if the support of T € D’(Q) is a compact subset of Q, then T" has finite order.
(5) Characterize the distributions supported on finite sets.

(6) Show that every distribution on R is the limit of (in the topology on D’) infinitely differentiable
functions. Hint: construct a sequence of approximation by mollification. Be careful, when you
define convolution of distributions.

Exercise 2 (Harmonic functions, Liouville-type theorems).

(1) Show that when d = 2 (the dimension of the ambient space), any positive superharmonic function
(defined on the whole space) is constant, while this is not necessary the case when d > 3. Hint:
compare your superharmonic function to a family of harmonic functions obtained by “flattening”
of the fundamental solution — log|z]|.

(2) Show that harmonic functions refined on the whole space, that vanish on an open set vanish ev-
erywhere (without knowing analiticity). For this, using the divergence theorem, show that if u is
harmonic, then

d

— u(rz)u(z/r)de = 0.
dr|m|:1<)(/) 0



Conclude by scaling that

u(az)u(bx)dz = / u?(cz)dz,

z[=1 lz[=1

where ab = ¢2. Using the previous results, conclude that if u vanishes in a neighborhood of the

origin, then it vanishes identically.
Exercise 3 (Harnack inequality and regularity).
(1) Show that if w > 0 is a harmonic function on Bj(0), then there exists C(d) > 0 such that

sup u < C(d)u(0).
Bys

Show that C(d) < 2.

(2) Using the Harnack inequality, show the oscillation decay estimate: if u is a not necessarily nonneg-
ative harmonic function on Bj(0), then

C(d
0SCR, ,,(0)U < = 08CR, (0)U;

Cd)+1
where for u: A — R, oscqu :=sup, u — inf 4 u.
(3) Using the oscillation decay estimate, show that

B1

[ullco.« < M(d) sup. |ul,

where (1/2)* = C%)ﬁl and M (d) > 0 depends only on d.

(4) Show that if we have a one-sided bound on a harmonic function u defined on R?, e.g. u(z) > f(|z|)
for some radial function f, then we have an upper bound as well, i.e. there exists g radial such
that u(x) < g(|z|) where g has the same growth as f at co. Show that if « is harmonic and we can
“touch it” below by a paraboloid of opening M, then we can touch it by above with a paraboloid
of opening CM.



