
Math 251A: Introductory PDE
Homework #1

Due: Wednesday, October 18th, 2017

Exercise 1 (Distributions).

Let Ω ⊆ Rd be an open set. We consider D(Ω) = C∞
c (Ω) the space of all compactly supported

functions defined on Ω with values in R. One can put a topology on D(Ω) by defining limits of functions
as follows: we say that a sequence (ϕn)n∈N in D(Ω) converges to ϕ ∈ D(Ω) if,

(i) there is a compact set K ⊂ Ω, s.t. ∪n∈Nspt(ϕn) ∪ spt(ϕ) ⊆ K;
(ii) ∂αϕn → ∂αϕ uniformly as n→∞, for each multi-index α.
A linear functional on D(Ω) which is continuous w.r.t. the previously described topology is called

a distribution. We denote the space of distributions as D′(Ω) (i.e. the continuous topological dual of
D(Ω)).

Let T ∈ D′(Ω) be a distribution. If U ⊆ Ω is an open set and Tϕ = 0 for all D(U), then we say
that T vanishes on U . Let V the union of all open sets in Ω where T vanishes. Then Ω \ V is called the
support of T .

(1) Show that T ∈ D′(Ω) if and only if for any K ⊂ Ω compact there exists C > 0 and N ∈ {0} ∪ N
such that

|Tϕ| ≤ C‖ϕ‖N
for all ϕ ∈ DK , where DK := {ϕ ∈ D(Ω) : spt(ϕ) ⊆ K} and ‖φ‖N := max{|∂αϕ(x)| : x ∈ Ω, |α| ≤
N}. If there exist N ≥ 0 which can be used in the above description for all K ⊂ Ω compact (with
possibly different C), the smallest of these is called the order of T . If no such N exists, then we
call T of infinite order.

(2) Give examples of distribution with order 2 and ∞. Show that T ∈ D′(Ω) is of order 0, if and only
if it is a finite signed measure on Ω.

(3) Let T ∈ D′(Ω) such that Tϕ ≥ 0 for all ϕ ∈ D(Ω), ϕ ≥ 0. Show that T is a finite positive measure
on Ω.

(4) Show that if the support of T ∈ D′(Ω) is a compact subset of Ω, then T has finite order.

(5) Characterize the distributions supported on finite sets.

(6) Show that every distribution on Rd is the limit of (in the topology on D′) infinitely differentiable
functions. Hint: construct a sequence of approximation by mollification. Be careful, when you
define convolution of distributions.

Exercise 2 (Harmonic functions, Liouville-type theorems).

(1) Show that when d = 2 (the dimension of the ambient space), any positive superharmonic function
(defined on the whole space) is constant, while this is not necessary the case when d ≥ 3. Hint:
compare your superharmonic function to a family of harmonic functions obtained by “flattening”
of the fundamental solution − log |x|.

(2) Show that harmonic functions refined on the whole space, that vanish on an open set vanish ev-
erywhere (without knowing analiticity). For this, using the divergence theorem, show that if u is
harmonic, then

d

dr

∫
|x|=1

u(rx)u(x/r)dx = 0.



Conclude by scaling that ∫
|x|=1

u(ax)u(bx)dx =

∫
|x|=1

u2(cx)dx,

where ab = c2. Using the previous results, conclude that if u vanishes in a neighborhood of the
origin, then it vanishes identically.

Exercise 3 (Harnack inequality and regularity).

(1) Show that if u ≥ 0 is a harmonic function on B1(0), then there exists C(d) > 0 such that

sup
B1/2

u ≤ C(d)u(0).

Show that C(d) ≤ 2d.

(2) Using the Harnack inequality, show the oscillation decay estimate: if u is a not necessarily nonneg-
ative harmonic function on B1(0), then

oscB1/2(0)u ≤
C(d)

C(d) + 1
oscB1(0)u,

where for u : A→ R, oscAu := supA u− infA u.

(3) Using the oscillation decay estimate, show that

‖u‖C0,α ≤M(d) sup
B1(0)

|u|,

where (1/2)α = C(d)
C(d)+1 and M(d) > 0 depends only on d.

(4) Show that if we have a one-sided bound on a harmonic function u defined on Rd, e.g. u(x) ≥ f(|x|)
for some radial function f , then we have an upper bound as well, i.e. there exists g radial such
that u(x) ≤ g(|x|) where g has the same growth as f at ∞. Show that if u is harmonic and we can
“touch it” below by a paraboloid of opening M , then we can touch it by above with a paraboloid
of opening CM .
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