Math 251A: Introductory PDE Homework #3

Due (recommended): November 22nd, 2017

Exercise 1 (Some warm up problems and reading).

- (1) Read Chapter 5.5 from Giaquinta and Martinazzi.
- (2) Exercise 5.16 (page 85) from Giaquinta and Martinazzi.
- (3) Exercises 6.3 and 6.4. (page 98) from Giaquinta and Martinazzi.

Exercise 2 (Caccioppoli's inequality revisited).

Let $\Omega \subseteq \mathbb{R}^d$ be a smooth bounded domain. Part 1

(1) Let $u, v: \Omega \to \mathbb{R}$ be differentiable functions such that $v \neq 0$ in Ω . Show the identity

$$|\nabla u|^2 - \nabla (u^2/v) \cdot \nabla v = |\nabla u - (u/v)\nabla v|^2, \tag{1}$$

where $|\cdot|$ stands for the standard Euclidean norm in \mathbb{R}^d .

(2) Let v > 0 be a continuous (weakly) harmonic function on Ω and $\eta \in C_c^{\infty}(\Omega), \eta \ge 0$. Using the previous identity, show

$$\int_{\Omega} |\eta \nabla v|^2 \mathrm{d}x \le 4 \int_{\Omega} |v \nabla \eta|^2 \mathrm{d}x$$

and deduce Caccioppoli's inequality.

Part 2

(1) Let u be a weakly p-harmonic function on Ω (p > 1), i.e. the weak solution of the equation

$$-\nabla \cdot (|\nabla u|^{p-2} \nabla u) = 0.$$
⁽²⁾

If we set u = g on $\partial\Omega$, which is the least possible regularity for g that ensures that (2) has a unique solution with this boundary condition? Using eventually calculus of variations, show that the previous problem has a unique solution in a suitable Sobolev space that you need to determine. *Hint:* you should address the l.s.c. and coercivity of the energy functional in particular.

(2) Write a suitable version of (1) involving p > 1, i.e. for functions as in (1)/Part 1 and p > 1 show that

$$|\nabla u|^p - \nabla (|u|^p / v^{p-1}) \cdot |\nabla v|^{p-2} \nabla v = \Phi_p(u, v),$$

where $\Phi_p(u, v) \ge 0$ has to be determined.

(3) Using this previous identity, show that for any positive solution of (2) and $\eta \ge 0$ smooth compactly supported in Ω , one has

$$\int_{\Omega} |\eta \nabla v|^p \mathrm{d}x \le p^p \int_{\Omega} |v \nabla \eta|^p \mathrm{d}x.$$

Deduce the corresponding Caccioppoli inequality.

(4) Imagine that one wants to solve (2) with and f right hand side. Which is the least regularity for f that allows us to construct a weak solution of the problem in the corresponding Sobolev space described in (1)? Does the obtained Caccioppoli inequality allow us to obtain second order Sobolev estimates provided $f \in L^q(\Omega)$ for a suitable q > 1? Can one iterate these estimates? Justify your answers.

Exercise 3 (Neumann problems).

Let $\Omega \subset \mathbb{R}^d$ be a smooth bounded domain. We denote the outward normal to $\partial \Omega$ by n.

(1) Let q > 1 and $f \in (W^{1,q'}(\Omega))'$, where 1/q + 1/q' = 1. Show that the equation

 $-\nabla \cdot F = f$

with $F \cdot n = 0$ on $\partial\Omega$ has at least one weak solution $F \in L^q(\Omega; \mathbb{R}^d)$. Write also the corresponding weak formulation and comment a bit on the boundary condition. What can we say about the uniqueness of the solution?

(2) Let $w \in L^q(\Omega; \mathbb{R}^d)$. Show that the problem

$$-\Delta u + \nabla \cdot w = 0 \tag{3}$$

with the boundary condition $(\nabla u - w) \cdot n = 0$ on $\partial \Omega$ has a weak solution $u \in W^{1,q}(\Omega)$. If one imposes $\int_{\Omega} u dx = 1$, show that this solution is unique. *Hint:* use the previous point.

- (3) Suppose that $w \in H^1(\Omega)$. Show that the solution u of the problem (3) is $H^2(\Omega)$ up to the boundary.
- (4) Let $b \in L^q(\Omega; \mathbb{R}^d)$. Show that the problem

$$-\Delta u + \nabla \cdot (bu) = 0 \tag{4}$$

with the boundary condition $(\nabla u - w) \cdot n = 0$ on $\partial \Omega$ has a weak solution $u \in W^{1,q}(\Omega)$.

(5) Suppose that q > d and any u solution to (4) for any $b \in L^q(\Omega; \mathbb{R}^d)$ with $\int_{\Omega} u dx = c > 0$ is such that u > 0 on every open subset of Ω . Show that u > 0 on $\overline{\Omega}$. Notice that if $u \in W^{1,q}(\Omega)$ and q > d, one can identify it with its Hölder continuous representative, thus it is meaningful to evaluate u on $\partial\Omega$ in the usual sense. *Hint:* you may do a reflection argument, i.e. take $x_0 \in \partial\Omega$ and extend both u and b by reflection to a whole ball $B_r(x_0)$ in a way that these solve a similar equation to (4). Write a detailed proof!

Exercise 4 (On Hölder regularity).

(1) Show that $u \in C^{0,\alpha}(\Omega)$ if and only if there exists a constant K > 0 and for all $x \in \Omega$ there exists $C_x \in \mathbb{R}$ such that

$$||u - C_x||_{L^{\infty}(B_r(x))} \le Kr^{\alpha}$$

Furthermore show that if $|C_x| + K \leq M$ for all $x \in \Omega$, then $||u||_{C^{0,\alpha}} \leq M$. Explain a bit geometrically this characterization of Hölder continuous functions.

(2) Show that $u \in C^{1,\alpha}(\Omega)$ if and only if for all $x \in \Omega$ there exists a linear function $l_x(y) = a_x + b_x \cdot (y-x)$ and a uniform constant K > 0 such that

$$||u - l_x||_{L^{\infty}(B_r(x))} \le Kr^{1+\alpha}$$

Furthermore show that if $|a_x| + |b_x| + K \leq M$ for all $x \in \Omega$, then $||u||_{C^{1,\alpha}} \leq M$. What does this characterization mean geometrically?

- (3) Formulate similar characterization with paraboloids for functions $u \in C^{2,\alpha}(\Omega)$.
- (4) Explain why the condition $||u l_x||_{L^{\infty}(B_r(x))} \leq Kr$ implies $C^{0,1}$ regularity (i.e. Lipschitz continuity) but not C^1 . In particular, why does one need to take $\alpha \in (0, 1)$?

(5) Suppose that we can find a sequence of paraboloids $p_k = a_k + b_k \cdot x + \frac{1}{2}x^\top M_k x$ and an 0 < r < 1 such that

$$||u - p_k||_{L^{\infty}(B_{r^i})} \le Kr^{i(2+\alpha)}$$

for a uniform constant $K, i \in \mathbb{N}$ and $\alpha \in (0, 1)$. Show that $u \in C^{2,\alpha}(\Omega)$ with a norm that depends on K and r.

(6) We investigate the case when $\alpha = 0$ in the previous characterization. Suppose that p is a quadratic polynomial and η a smooth cutoff function such that $\eta \equiv 1$ on $B_{1/2}(0)$. Then define

$$u(x) = \sum_{k} 2^{-2k} (\eta p)(2^k x).$$

Let p_i be the first *i* terms of the previous series. Show that

$$\|u - p_i\|_{L^\infty} \le C2^{-2i}$$

but u is not C^2 .