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Exercise 1 (8 points).

Let us consider the trigonometric functions sin, cos : R → R. In this exercise you might use all the
properties of these functions, which were derived during the lectures or showed in homework exercises.
We define tan : R \ {(k + 1/2)π : k ∈ Z} → R as

tan(x) :=
sin(x)

cos(x)
.

Notice that this function is well-defined, since cos is vanishing only at points of the form (k + 1/2)π,
k ∈ Z.

(1) Show that tan is π-periodic and differentiable on its domain of definition. Give a formula for its
derivative as well!

(2) Show the identity cos2(x) = 1/(1 + tan2(x)) for all x ∈ (−π/2, π/2).

(3) Show that tan is strictly increasing on (−π/2, π/2). Compute

lim
x→−π/2

tan(x) and lim
x→π/2

tan(x).

(4) Argue why is arctan differentiable. Derive the formula for its derivative. Hint: you might use
tan(arctan(x)) = x for all x ∈ R and (2).

(5) Show that tan is a bijective map from (−π/2, π/2) onto R, hence tan−1 : R→ (−π/2, π/2) exists.
We denote tan−1 as arctan.

(6) Using eventually the geometric series, write the power series expansion for arctan′ (the derivative
of arctan) with center 0 for all x such that |x| < 1.

(7) Using the appropriate theorem for power series, deduce a power series expansion for arctan on
(−1, 1). Argue why is arctan is real analytic on (−1, 1). Hint: you might use a homework exercise
to justify the last question.

(8) Using Abel’s theorem and (7), show that arctan is continuous at x = 1, (although we know that
the function is differentiable by (5), show the continuity of it at x = 1, as it is asked, using Abel’s
theorem). Hint: you have to discuss the convergence of an alternating series.

(9) Using the fact that tan(π/4) = 1 and (8), write π/4 as the sum of a convergent series.

Solution
(1) From the definition of Trigonometric functions, we have

cos(z + π) =
ei(z+π) + e−i(z+π)

2
=
−eiz − e−iz

2
= − cos(z) (1)

sin(z + π) =
ei(z+π) − e−i(z+π)

2i
=
−eiz + e−iz

2i
= − sin(z) (2)

Using the properties above, we conclude that

tan(z + π) =
cos(z + π)

sin(z + π)
=
− cos(z)

− sin(z)
= tan(z) (3)

Note that tan(z) is well defined on the domain. Moreover, it is differentiable since sin and cos are
differentiable on the domain. Use Theorem 4.7.2 in the textbook and differentiation formula for fractions
to conclude that

(tan(z))′ =
(sin(z))′ cos(z)− sin(z)(cos(z))′

cos2(z)
=

sin2(z) + cos2(z)

cos2(z)
=

1

cos2(z)
(4)
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(2)

1 + tan2(x) = 1 +
sin2(x)

cos2(x)
=

cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
(5)

(3) Let f(x) := tan(x). From part (1), we get

f ′(x) =
1

cos2(x)
> 0 (6)

Thus, tan is strictly increasing on (−π/2, π/2).

Note that

{
sin(x)→ −1 and cos(x)→ +0 as x→ −π/2
sin(x)→ 1 and cos(x)→ +0 as x→ π/2

From this, we conclude that

lim
x→−π/2

tan(x) = −∞, lim
x→π/2

tan(x) = +∞ (7)

(4) arctan is differentiable since (tan(x))′ = 1
cos2(x) is non-vanishing on the domain. Use the Chain

rule and part (2) to get

1 = (x)′ = (tan(arctan(x))′ =
1

cos2(arctan(x))
(arctan(x))′ (8)

(arctan(x))′ = cos2(arctan(x)) =
1

1 + tan2(arctan(x))
=

1

1 + x2
(9)

(5) In part (3), we showed that

lim
x→−π/2

tan(x) = −∞, lim
x→π/2

tan(x) = +∞ (10)

Note that tan is differentiable, in particular, it is continuous. Thus by mean value theorem, tan is a
surjective (onto) map. On the other hand, tan is strictly increasing, and so it is injective (one to one).
Therefore, tan is a bijective map from (−π/2, π/2) onto R

(6)

(arctan(x))′ =
1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n (11)

This formula is valid for | − x2| < 1, i.e. |x| < 1, by geometric series.
(7) The radius of convergence of power series is preserved by differentiation and integration. Moreover,

for each r < 1,
∑∞
n=0 x

2n converges uniformly on (−r, r). It follows that∫ ∞∑
n=0

(−1)nx2n =

∞∑
n=0

∫
(−1)nx2n =

∞∑
n=0

(−1)n
1

2n+ 1
x2n+1 + C (12)

Note that arctan(0) = 0. This implies C = 0, arctan(x) =
∑∞
n=0(−1)n 1

2n+1x
2n+1 for x ∈ (−r, r). Since

r < 1 is arbitrary, this is true for any x ∈ (−1, 1). In particular, arctan is real analytic on (−1, 1).
(8) At x = 1, we have

∞∑
n=0

(−1)n
1

2n+ 1
x2n+1 =

∞∑
n=0

(−1)n
1

2n+ 1
(13)

Let an = 1
2n+1 . Note that {an}∞n=0 is positive, decreasing, and limn→∞ an = 0. By alternating series

test,
∑∞
n=0(−1)n 1

2n+1 converges. Thus, Abel’s theorem implies arctan is continuous at x = 1.
(9)

π/4 = arctan(1) =

∞∑
n=0

(−1)n
1

2n+ 1
(14)
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Exercise 2 (Fourier series – 9 points).

Let us consider the function f : R → R defined as f(x) = x for all x ∈ [0, 1), and then we extend it
periodically to the whole real line. For a given metric space (X, d), we denote by C(R/Z;X) the space
of continuous functions defined on R with values in X that are Z-periodic.

(1) Is f an element of C(R/Z;R)? Justify your answer!

(2) Find the Fourier coefficients of f and the Fourier series associated to f . Hint: you might use either
the definition with the complex valued characters, or the equivalent definition with sin and cos.

(3) Is it possible to study the uniform convergence of the series found in (2), by Weierstrass’ M-test?
Justify your answer!

(4) Study the pointwise convergence of the series found in (2) at x = 0 and x = 1. What do you
observe? Is the Fourier series of f converging uniformly to f on R? Justify your answers!

(5) Show the pointwise convergence of the series at x = 1/2 and x = 1/4 to f(1/2) and f(1/4)
respectively. Hint: for the latter one, you might use Exercise 1(9).

(6) Show that the Fourier series found in (2) is converging in the L2 sense to f , meaning that the
sequence of partial sums is converging w.r.t. the dL2 metric to f . Recall that for two complex
valued Z-periodic square integrable functions g, h , we define the dL2 metric as

dL2(g, h) :=

(∫ 1

0

|g(x)− h(x)|2 dx

)1/2

.

Hint: compute the integral by hand. You might use the fact that
∑
n≥1

1
n2 = π2/6.

Solution
(1) No. limx→1− f(x) = 1 6= 0 = f(0) = f(1)
(2) Note that e2πin = 1 When n 6= 0,

f̂(n) =

∫ 1

0

f(x)e−2πinxdx

=

∫ 1

0

xe−2πinxdx

= x · 1

−2πin
e−2πinx

∣∣1
0
−
∫ 1

0

1 · 1

−2πin
e−2πinxdx

= (1 · 1

−2πin
e−2πin − 0)− 1

(2πin)2
e−2πinx

∣∣1
0

= − 1

2πin

For n = 0, f̂(0) =
∫ 1

0
xdx = 1

2 . Thus, the Fourier series associated to f is

∞∑
n=−∞

f̂(n)e2πinx =
1

2
+
∑
n 6=0

− 1

2πin
e2πinx =

1

2
−
∞∑
n=1

1

πn
sin(2πnx) (15)

(3) No.

| − 1

2πin
e2πinx| = 1

2πn
(16)

which is not summable. Therefore, we cannot apply the Weierstrass’ M-test to study the uniform con-
vergence of the series.
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(4) At x = 0 and x = 1, sin(2πnx) = 0. Thus, the series converges pointwisely to 1
2 . If the Fourier

series of f were converging uniformly to f on R, the function f should be continuous. On the other
hand, in part (1), we observed that f is not continuous. Thus, the Fourier series of f does not converge
uniformly to f on R.

(5) At x = 1
2 , sin(2πnx) = 0 for all n ≥ 1. Thus, the series converges to 1

2 .

At x = 1
4 , sin(2πnx) =

{
(−1)k if n = 2k + 1

0 if n = 2k

1

2
−
∞∑
n=1

1

πn
sin(2πn

1

4
) =

1

2
−
∞∑
k=0

(−1)k

(2k + 1)π
=

1

2
− 1

π
· π

4
=

1

4
(17)

(6) Use (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc to conclude

(x− 1

2
+

k∑
n=1

1

πn
sin(2πnx))2 = x2 +

1

4
+(

k∑
n=1

1

πn
sin(2πnx))2−x+2

k∑
n=1

x

πn
sin(2πnx)−

k∑
n=1

1

πn
sin(2πnx)

(18)
It is easy to check that ∫ 1

0

sin(2πnx) sin(2πmx)dx =

{
1
2 if n = m

0 if n 6= m
(19)

∫ 1

0

x sin(2πnx)dx = − 1

2πn
(n 6= 0) (20)∫ 1

0

sin(2πnx)dx = 0 (n 6= 0) (21)

A combination of the equalities yields∫ 1

0

|x− 1

2
+

k∑
n=1

1

πn
sin(2πnx)|2dx

=

∫ 1

0

x2 − x+
1

4
dx+

k∑
n=1

1

2
(

1

πn
)2 + 2

k∑
n=1

1

πn
(− 1

2πn
)

=
1

12
− 1

2π2

k∑
n=1

1

n2

→ 1

12
− 1

2π2

π2

6
= 0 as k →∞
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Exercise 3 (A generalization of the Arzelà-Ascoli theorem and its applications - 6+2.5+3.5=12 points).

Let (X, dX) be a metric space. Let us recall the following notions. We say that a set E ⊆ X is dense
in X, if for any r > 0 and any x ∈ X, B(x; r) ∩ E 6= ∅. Equivalently, E ⊂ X is dense if, for any x0 ∈ X
there exists a sequence from E that converges to x0. We say that the metric space (X, d) is separable, if
it contains a countable dense set.

Let (X, dX) be a compact separable metric space and (Y, dY ) be a compact metric space. We consider
a sequence (fn)n∈N of equicontinuous functions, i.e. fn : X → Y for all n ∈ N and for any ε > 0, there
exists δε > 0 s.t.

dY (fn(x), fn(y)) ≤ ε, ∀x, y ∈ X : dX(x, y) ≤ δε, ∀n ∈ N.

Part 1

(1) Show that the sequence (fn)n∈N is uniformly bounded. Hint: what do you know about the metric
space (Y, dY )?

(2) Show that the sequence (fn)n∈N has a subsequence which is uniformly converging to some continuous
function f : X → Y . Hint: you should consider breaking the proof into several steps. Notice first
that (X, dX) is separable, hence it has a countable dense set E ⊆ X. Study the convergence of
the sequences {(fn(x))n∈N : x ∈ E}, pass to subsequences. Use a diagonal argument to construct a
subsequence of the original sequence of functions which is converging at every element of E. Then
use the fact that (X, d) is compact and that E is dense in X, to show that this subsequence is
Cauchy. Lastly, is the space of continuous functions between X and Y complete? Why? Conclude!

Solution
(1) Since the space (Y, dY ) is compact, hence it is (totally) bounded in particular. This means that

there exists C > 0 and y0 ∈ Y s.t. Y ⊆ B(y0;C). In particular fn(x) ∈ B(y0;C) for all x ∈ X and for
all n ∈ N. This means that the sequence (fn)n is uniformly bounded.

(2) We proceed by a diagonal argument as follows. Let us denote the countable dense set E of X by
the sequence (xn)n∈N, such that xi ∈ X for all i ∈ N. Since (fn(x1))n is a sequence in a compact space, it
has a convergent subsequence, that we denote by (fn1

(x1))n1
. Similarly (fn1

(x2))n1
is a sequence in the

same compact space, it has a convergent subsequence that we denote by (fn2(x2))n2∈N. Using the same
procedure, after k steps, we have a subsequence (fnk

)nk
which is converging at the points {x1, x2, . . . , xk}.

Let us define a subsequence of (fn)n by a diagonal procedure,

gi := f ini
, ∀i ∈ N,

meaning that we take the ith element of the sequence indexed by ni (that we obtained at the ith step).
By this construction, (gi)i∈N is converging pointwisely on the dense set E. This implies in particular
that for any xi ∈ E, (gn(xi))n is a Cauchy sequence in (Y, dY ), so for any ε > 0 there exists an index
Nε,xi

∈ N such that
dY (gn(xi), gm(xi)) ≤ ε, ∀n,m > Nε,xi

. (22)

Since the sequence is equicontinuous, one has that for any ε > 0 there is a δε > 0 such that

dY (gn(x), gn(y)) ≤ ε, ∀x ∈ X, y ∈ B(x; δε), n ∈ N. (23)

Now, clearly X ⊆
⋃
x∈X B(x; δε), which is an open cover of X. By the fact that X is compact, there is

a number m ∈ N and {y1, . . . , ym} ⊂ X such that

X ⊆
m⋃
i=1

B(yi; δε)
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Since the set E is dense, for each i ∈ {1, . . . ,m}, there exists xi ∈ E ∩B(yi; δε), moreover, for any y ∈ X,
there exists i ∈ {1, . . . ,m} such that y ∈ B(yi; δε). Now fix any y ∈ X and take the corresponding yi and
xi. We have

dY (gn(y), gm(y)) ≤ dY (gn(y), gn(xi)) + (gn(xi), gm(xi)) + dY (gm(xi), gm(y)) ≤ ε+ ε+ ε = 3ε,

where the first and the third ε is coming from (23) and the second inequality is due to (22), provided
n,m ≥ max{Nε,xi

: i ∈ {1, . . . ,m}}. Thus, taking the supremum w.r.t. y ∈ X the sequence (gn)n is
Cauchy w.r.t. the uniform convergence of continuous functions. Last, the space of continuous functions
is complete, provided the image space is complete. (Y, dY ) is compact, so in particular complete, hence
the sequence (gn)n converges uniformly to some continuous function.
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Part 2

(1) Let us consider a sequence (rn)n∈N of continuously differentiable functions with values in [−5, 5],
i.e. there is a T > 0 given and rn : [0, T ] → [−5, 5] are continuously differentiable functions for all
n ∈ N. We suppose that there exists M > 0 such that∫ T

0

|r′n(t)|2 dt < M, ∀n ∈ N.

Show that this sequence of functions has a subsequence that is converging uniformly to some contin-
uous r : [0, T ]→ [−5, 5]. Hint: show that the sequence is equicontinuous by using the fundamental
theorem of calculus and a Cauchy-Schwarz inequality, then conclude by Part 1.

Solution
Take s, t ∈ [0, T ], s < t, then we have rn(t) − rn(s) =

∫ t
s
r′n(τ) dτ, from where using the Cauchy-

Schwarz inequality, we get

|rn(t)− rn(s)| =
∣∣∣∣∫ t

s

r′n(τ) dτ

∣∣∣∣ ≤ ∫ t

s

|r′n(τ)|dτ

≤
(∫ t

s

dτ

)1/2(∫ t

s

|r′n(τ)|2 dτ

)1/2

≤ |t− s|1/2
(∫ T

0

|r′n(τ)|2 dτ

)1/2

≤
√
M |t− s|1/2.

The last inequality implies that the sequence is equicontinuous. Indeed, for any ε > 0, by choosing
δε := ε2/M , we have that

|rn(t)− rn(s)| ≤ ε, ∀n ∈ N,
whenever |t− s| ≤ δε. Since both [0, T ] and [−5, 5] equipped with the standard metric are compact and
separable spaces, we can conclude by Part 1.

Part 3

(1) Let X be a nonempty set and let dX = ddisc. Let (Y, dY ) be an arbitrary metric space. Show that
any function f : X → Y is uniformly continuous.

(2) Let X be a finite set i.e. X = {x1, . . . , xn} for some n ∈ N and dX any metric on X. Let
(Y, dY ) be a compact metric space. Show that any sequence of functions (fn)n∈N, fn : X → Y is
equicontinuous. Can you say that any sequence of functions like this has a uniformly convergent
subsequence? Justify your answer! Draw an analogy between these sequences of functions and
bounded sequences in (Rn, d`2).

Solution
(1) Take an arbitrary function f : X → Y , take any ε > 0 and set δ := 1/2. By this choice one has

that
dY (f(x), f(y)) ≤ ε,

for all x, y ∈ X such that dX(x, y) ≤ δ. Indeed, the only pairs that satisfy dX(x, y) ≤ δ are such that
x = y, for which f(x) = f(y), hence dY (f(x), f(y)) = 0. This shows that any function is uniformly
continuous.

(2) For any function f : X → Y and for any ε > 0, set δ := min{dX(x, y) : x, y ∈ X}/2, which is a
well-defined positive number since X is a finite set. Now, similarly as in (1), one has that dX(x, y) ≤ δ
implies x = y, thus dY (f(x), f(y)) = 0 ≤ ε. Since the choice of δ is independent of f and the points
x, y ∈ X (and actually of ε as well), we have that any sequence in this setting is equicontinuous. Since
any finite metric space is compact and separable, we are in the framework of Part 1, so we can conclude.

This last scenario is analogous to the Bolzano-Weierstrass theorem in (Rn, d`2). Indeed, any function
that maps X to Y , it basically creates n−tuples in Y (because we have to describe its values at n different
point only). So the whole space of function between X and Y behaves exactly as Y × Y × . . . Y =: Y n.
Since Y is compact, Y n is also compact, so any sequence in Y n has a convergent subsequence. This
means that any function sequence between X and Y has a pointwise convergent subsequence. But all
these functions are uniformly continuous and any sequence is equicontinuous, hence the convergence is
uniform as well.
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Exercise 4 (5+10=15 points).

Let (X, d) be a metric space and E ⊆ X. We say that x0 ∈ E is an isolated point of E, if there exists
r > 0 such that B(x0; r)∩E = {x0}, i.e. the ball B(x0; r) does not contain any other points from E, but
x0. If E has only isolated points, we call it a discrete set.

Part 1

(1) Let us consider (X, ddisc). Show that any point of X is an isolated point, hence X is a discrete set
(so the name of the metric is justified).

(2) Give an example (with justification) of a compact metric space and a discrete subset of it, which
has infinitely many elements.

(3) Show that any discrete subset of the real line equipped with the standard metric has countably
many elements! Hint: you may assume that there are countably many rationals and the rationals
are dense in R.

(4) Let (X, d) be an arbitrary metric space and let x0 be an isolated point of X. Show that the set
{x0} is both open and closed.

Solution.
(1) Clearly, for any x ∈ X, B(x; 1/2) ∩X = {x}, thus x is isolated.
(2) Let X = {1/n : n ∈ N}∪{0} and d the standard metric on R This is clearly a compact space. Let

E = X \ {0}. Then E is discrete and has infinitely many elements.
(3) Let E be a discrete set of R. By definition for any x ∈ E, ∃r > 0 such that B(x; r) ∩ E = {x}.

We know also that B(x; r) contains at least one rational, by density. By this fact, to any x ∈ E one can
associate a rational. Since the rationals are countable, E is countable.

(4) By definition of isolated point, there exists r > 0, such that B(x0; r) ∩X = {x0}. Thus, {x0} is
open in X, since B(x0; r) ⊆ {x0}. Any singleton is a closed set. Therefore, {x0} is both open and closed.
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Part 2
Let us consider a metric space (X, d) and a nonempty subset E ⊆ X. Let us consider a family F of

subsets of X with the following properties

• if A ∈ F , then int(A) 6= ∅;

• for each B ⊂ X nonempty and open there exists A ∈ F such that A ⊆ B.

Two players P1 and P2 play the following game: they alternatively choose sets F1 ⊃ F2 ⊃ F3 ⊃ . . . from
the family F . P1 wins if and only if

E ∩

(⋂
n

Fn

)
6= ∅,

otherwise P2 wins. Notice that this game might not end in finitely many moves.

(1) Let X = {x1, x2, x3} be a set with 3 distinct elements, let d = ddisc and let E = {x1}. Write down
the family F associated to this configuration.

(2) Show that in the case of (1), P1 has a winning strategy, i.e. there is a set of moves for P1 such that
no matter what P2 does, P1 wins using this set of moves.

(3) Show that for an arbitrary metric space (X, d) with an isolated point x0 ∈ X, and for a subset E of
X containing x0, P1 has a winning strategy. In how many moves does the game end in this case?

(4) Show that for an arbitrary metric space (X, d) and E ⊂ X nonempty and open, P1 has a winning
strategy. Give an example of a metric space and an open subset of it E s.t. P2 has a winning
strategy.

(5) Let (X, d) be an arbitrary metric space and let U ⊆ X be a nonempty open set and let x0 ∈ U .
Show that U \ {x0} is an open set.

(6) Let (X, d) be an arbitrary metric space that has no isolated points. Let E be a nonempty countable
subset of X. Show that in this case P2 has a winning strategy. Describe this strategy. Hint: notice
that the objective of P1 is to choose sets which contain as many elements from E as possible, while
the objective of P2 if to choose sets which contain as few elements as possible from E.

(7) In the situation as in (6), what changes if E is a finite set? Can P2 win in less moves?

Solution.
(1) A possible choice for the family F is to consider all possible subsets of X, i.e.

F := {{x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}.

Another choice that satisfies the properties is for instance F := {{x1}, {x2}, {x3}, {x1, x3}}. Other correct
choices are also possible

(2) P1 choses {x1}, then P2 cannot choose anything, moreover E ∩ {x1} = {x1}, so P1 wins.
(3) Since x0 is an isolated point of X, {x0} is open. By the second property, it will be an element of

F . The winning strategy for P1, as in (2), is to choose {x0} at the first step. Then the game ends in one
move.

(4) Let us consider (Q, d) as a metric space where d is a standard metric on R restricted to Q. Let
E = Q, then P2 has a winning strategy. Indeed, whatever P1 choses, P2 removes at least one element
in the next step, so that the consider set is in F . Since the rationals are countable, by this procedure
eventually after infinitely many steps P2 wins the game. Actually this strategy is the same as in (6).

(5) Notice that X \ (U \ {x0}) = (X \ U) ∪ {x0}, moreover this last set is closed since it is the union
of two closed sets. Thus the complement of U \ {x0} is closed, so this set it open.

(6) Let us denote E = {x1, x2, . . .}. Suppose that P1 chooses the set F1, which has U1 as its nonempty
interior. Then U1 \ {x1} is an open set, and P2 chooses a set from F that is contained in U1 \ {x1} (this
is possible by the second point). After, whatever P1 does, P2 behaves as described before, and after each
move of P2, at least one element of E is excluded from the chain of chosen sets. Thus, this is the winning
strategy of P2.

(7) Yes. P2 can win in a finite number of steps.
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