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• The problems are not necessarily ordered w.r.t. difficulty.
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• I wish you success!
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Exercise 1 (6 points).

We define ρ1, ρ2 : R× R→ [0,+∞) as

ρ1(x, y) := |x− y|2 and ρ2(x, y) :=
∣∣x2 − y2∣∣ .

(1) Show that ρ1 cannot define a metric on R, hence (R; ρ1) cannot be a metric space.

(2) Show that ρ2 defines a metric on [0,+∞), hence ([0,+∞); ρ2) is a metric space.

(3) Show that ρ2 does not define a metric on [−1, 1], hence ([−1, 1]; ρ2) cannot be a metric space.

(4) Let X 6= ∅ and let f : X → R be an injective (one-to-one) function. Show that ρ3 : X×X → [0,+∞)
defined as

ρ3(x, y) := |f(x)− f(y)|

defines a metric on X, hence (X, ρ3) is a metric space.

Solutions
(1) Here the triangle inequality will go wrong. Indeed, suppose that for all x, y, z ∈ R one has

|x− z|2 ≤ |x− y|2 + |y − z|2,

then developing the squares one obtains

0 ≤ 2y2 − (2x+ 2z)y + 2xz.

Clearly, setting y = 0, x = −1 and z = 1 this inequality is violated, thus ρ1 cannot define a metric on R.
(2) Notice that the function t 7→ t2 is injective on [0,+∞)). Thus, this problem is a consequence of

(4) that we show below.
(3) Notice that ρ2(x, y) = 0 implies that |x| = |y| and on [−1, 1] this property does not imply that

x = y. Indeed, ρ2(1,−1) = 0, thus ρ2 cannot be a metric on [−1, 1].
(4) Clearly, ρ3(y, x) = ρ3(x, y) ≥ 0 and ρ3 satisfies the triangle inequality as a consequence of the

triangle inequality of the standard metric on R. So one only needs to check that ρ3(x, y) = 0 if and only
if x = y.This is true, because f is injective and so f(x) = f(y) if and only if x = y.
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Exercise 2 (7 points).

(1) Let X be a finite non-empty subset of R, i.e. X = {x1, . . . , xn} for some n ∈ N and xi ∈ R, for all
i ∈ {1, . . . , n}. Show that d`1 and ddisc are two equivalent metrics on X.

(2) Characterize the convergent sequences on the set N w.r.t. d`1 and ddisc.

(3) Show that d`1 and ddisc are not equivalent on the set N, despite the results that you obtained in
(2).

(4) Which are the compact sets in (N, d`1) and in (N, ddisc)? Characterize all these sets; justify your
answers!

(5) Show that both (N, d`1) and (N, ddisc) are complete metric spaces.

Solutions
(1) If X contains only one element, then the result is trivial. Otherwise, since X is a finite set, one

can define M := max{|x− y| : x, y ∈ X} and m := min{|x− y| : x 6= y ∈ X} and these are finite positive
numbers. Then

mddisc(x, y) ≤ d`1(x, y) ≤Mddisc(x, y), ∀x, y ∈ X, (1)

which shows the equivalence of the two metrics on X.
(2) W.r.t. both metrics, clearly a sequence is convergent in N if and only if from a certain index on

it is constant. This means in particular that they generate the same “notion of convergence”.
(3) If one supposes that the two metrics are equivalent, there should exists two constants m,M > 0

such that (1) holds true for all x, y ∈ N. However, there exists no such M > 0, because d`1(x, y) can be
arbitrary large if x, y ∈ N. Thus the two metrics cannot be equivalent on N.

(4) A set is compact, if every sequence in the set has a convergent subsequence. Clearly, sets with
infinitely many elements will have sequences that do not converge neither w.r.t. d`1 nor w.r.t. ddisc.
Hence the only candidates for compact sets are finite subsets of N, which will indeed be compact, since
any sequence defined on a finite sets has at least one element repeated infinitely many time. This will
define a convergent subsequent.

(5) A sequence (xn)n≥0 w.r.t. ddisc is Cauchy if for any ε > 0 there exists Nε such that

ddisc(xn, xm) < ε, ∀n,m ≥ Nε.

Take ε = 1/2 for instance, which implies that all such sequences have to be constant from a certain index
onwards. (2) tells us precisely that these sequences are convergent, hence (N, ddisc) is complete.

The very same reasoning shows also that (N, d`1) is complete as well.
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Exercise 3 (Dense and nowhere dense sets – 8+7 points).

Let (X, d) be an arbitrary metric space. We say that a set E ⊆ X is dense in X, if for any r > 0 and
any x ∈ X, B(x; r) ∩ E 6= ∅. We say that E ⊆ X is nowhere dense if int(E) = ∅.

Part 1

(1) Show that E is dense in X if and only if E = X.

(2) Show that if ∂E = X, then E is dense. Give an example to show that the opposite implication is
not true in general.

(3) Find all the dense sets in (X, ddisc). Justify your answer!

(4) Give two examples of dense sets in a metric space that are different from the whole space (the whole
space is clearly always dense).

(5) Let E ⊂ X be a dense set. Show that for any x ∈ X, there exists a sequence from E that converges
to x.

(6) Can we say that dense sets are always: (a) open (b) closed (c) complete (d) compact? Justify your
answers either with a proof or with a counterexample in each cases!

(7) Show that if E is dense in X and X is unbounded, so is E.

Solutions
(1) Suppose first that E is dense and show that its closure has to be the whole space. We know that

X = int(E) ∪ ∂E ∪ ext(E) = E ∪ ext(E)

and suppose that there exists an element x ∈ X \ E. Then by the previous decomposition x ∈ ext(E),
which means in particular that there exists r > 0 such that B(x; r) ∩ E = ∅, which contradicts to the
fact that E is dense.

Conversely, suppose that E = X and show that E is dense in X. The assumption implies in particular
that ext(E) = ∅, so there exists no ball B(x; r) such that B(x; r) ∩E = ∅, which means that E is dense.

(2) We know that E = int(E) ∪ ∂E = X by assumption, which by (1) implies that E is dense.
Let X = [0, 1] with the standard metric on it and consider E = (0, 1). Clearly, E is dense in X,

because E = [0, 1] = X, however ∂E = {0; 1}.
(3) The only dense set in (X, ddisc) is the set X itself. This is because a dense set has to intersect

every ball in X, but balls with smaller radius than 1 are singletons.
(4) One example was given already in (2). Another example is Q in R w.r.t. the standard metric.
(5) Take x ∈ X and for all n ∈ N define xn ∈ E ∩ B(x; 1/n), this element exists because E is dense

and clearly this sequence converges to x.
(6) The answer for all four questions is negative and Q in R with the standard metric is a counter-

example to all of these.
(7) Suppose that E is bounded, and such that E ⊆ B(x0; r) for some x0 ∈ X and r > 0. Now since X

is unbounded, there are some elements in X \B(x0; 2r). Clearly, such an element cannot be approximated
with a sequence from E, which contradict to (5). Hence E has to be unbounded as well.

4



Part 2

(1) Give an example of a metric space and a subset of it, which is nowhere dense.

(2) By providing an example, show that a nowhere dense set is not compact in general.

(3) Give an example of a subset of a metric space which is neither dense nor nowhere dense.

(4) Are there nowhere dense sets in (X, ddisc)? Give them all. Hint: a trivial example is also an
example.

(5) Show that the boundary of every open set is nowhere dense. Hint: construct a proof by contradic-
tion.

(6) Show that any finite union of nowhere dense sets is nowhere dense. Show that countable union of
nowhere dense sets in general is not nowhere dense. Hint: provide an example for the second part.

(7) Show that the complement of a closed nowhere dense set is open and dense. Hint: construct a proof
by contradiction.

Solutions
(1) Take (R, d) where d is the standard metric and set E = {1/n : n ∈ N}. Clearly E = {0} ∪ E and

int(E) = ∅, which implies that E is nowhere dense.
(2) The example provided in (1) gives such a set.
(3) Take for instance in R with the standard metric the set E = [0, 1]. This is not nowhere dense,

since int(E) = (0, 1) and it is not dense since it does not intersect for instance B(10; 2).
(4) The only nowhere dense set is the empty set. All other sets are both open and closed, so the

interior of their closure is the set itself which is not empty.
(5) Take (X, d) metric space and let E ⊆ X be open. Then E ∩ ∂E = ∅ which implies in particular

that ∂E ⊆ X \E. Suppose that there exists x0 ∈ int(∂E) ⊆ ∂E ⊆ X \E, which implies that there exists
r > 0 such that B(x0;R) ⊆ ∂E ⊆ X \ E. But this last inclusion implies that x0 is an exterior point,
which is a contradiction to the fact that it is a boundary point. The result follows.

(6) Let E1, . . . , En be nowhere dense sets in (X, d) for some n ∈ N finite. First, one has

∪ni=1Ei = ∪ni=1Ei.

Second, let us show that E is nowhere dense if and only if X\E is dense. For the first implication, suppose
that X \ E is not dense, and so there exists B(x; r) ⊆ X such that B(x; r) ∩ (X \ E) = ∅. This implies
that B(x; r) ⊆ E, which is clearly impossible by the fact that E is nowhere dense. For the converse
implication, let X \E be dense and we want to show that E is nowhere dense. Suppose the contrary, i.e.
there exists B(x; r) ⊆ E. But by the fact that X \E is dense, one has that B(x; r) ∩ (X \E) = ∅, which
is impossible since B(x; r) is entirely included in the complement of X \ E.

Now, it is enough to show that X\(∪ni=1Ei) is dense. We have by De Morgan’s law that X\(∪ni=1Ei) =
∩ni=1(X \Ei). Take a ball B(x; r) and show that ∩ni=1(X \Ei) ∩B(x; r) 6= ∅. Since Ei is nowhere dense,
and hence (X \Ei)∩B(x; r) 6= ∅ for all i ∈ {1, . . . , n}, and by the fact that this is the intersection of two
open sets (hence open), one has that

(X \ Ej) ∩ (X \ Ei) ∩B(x; r) 6= ∅, ∀j 6= i.

This can be iterated, and thus one obtains that

∩ni=1(X \ Ei) ∩B(x; r) 6= ∅,

what we wanted.
Uncountable union of nowhere dense sets is in general not necessarily nowhere dense. As an example,

consider R with the standard metric and write

Q = ∪q∈Q{q},
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since every singleton is nowhere dense, this provides the counterexample by the fact that Q is dense in
R.

(7) The openness is trivial. Let us show that the density property. Let F ⊆ X be a closed nowhere
set in (X, d). Then since F = int(F ) ∪ ∂F and int(F ) = int(F ) = ∅, one has that F = ∂F . And so
X = ∂F ∪ ext(F ) = F ∪ (X \ F ), hence X \ F = ext(F ). Suppose now that X \ F is not dense, which
implies that there exists B(x; r) in X such that ext(F ) ∩ B(x; r) = ∅, which means that B(x; r) ⊆ ∂F.
This implies in particular that x is an interior point of F = ∂F and F is closed which is a contradiction
to the fact that F is nowhere dense.
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