Math 131B: Analysis – Homework 1 Due: April 12, 2017

Exercise 1 (From Tao).

Let $n \in \mathbb{N}$ and let $a_i, b_i \in \mathbb{R}$ $i \in \{1, \ldots, n\}$. Show the identity

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 = \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{j=1}^{n} b_j^2\right).$$

Using the previous identity show the Cauchy-Schwaz inequality

$$\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} b_{j}^{2}\right)^{\frac{1}{2}}$$
(C-S)

Using (C-S) prove the triangle inequality

$$\left(\sum_{i=1}^{n} (a_i - b_i)^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} b_j^2\right)^{\frac{1}{2}}$$

Exercise 2 (From Tao).

- (1) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers, and let $x\in\mathbb{R}$. Show that $(x_n)_{n\in\mathbb{N}}$ converges to x if and only if $\lim_{n\to+\infty} d(x_n,x) = 0$, where $d(a,b) := |a-b|, \forall a, b \in \mathbb{R}$.
- (2) Show that d_{l^1} , d_{l^2} , $d_{l^{\infty}}$ and d_{disc} introduced during the first lecture define metrics on $X = \mathbb{R}^n$, $n \in \mathbb{N}$. Adjusting the definitions of d_{l^1} , d_{l^2} and $d_{l^{\infty}}$, show that they define metrics on $Y := \left\{ (a_n)_{n \in \mathbb{N}} : \sum_{n \ge 1} |a_n| < +\infty \right\}$, the space of absolutely summable sequences.
- (3) Let X = [0,1] and $f: X \to X$ be defined as f(x) = x if $x \in (0,1)$, f(0) = 1 and f(1) = 0. Let d(x,y) := |f(x) f(y)| for all $x, y \in X$. Show that d defines a metric on X.

Exercise 3.

Prove the following inequalities for d_{l^1} , d_{l^2} and $d_{l^{\infty}}$ on \mathbb{R}^n :

$$d_{l^{2}}(x,y) \leq d_{l^{1}}(x,y) \leq \sqrt{n} d_{l^{2}}(x,y), \ \forall x,y \in \mathbb{R}^{n};$$

$$\frac{1}{\sqrt{n}} d_{l^{2}}(x,y) \leq d_{l^{\infty}}(x,y) \leq d_{l^{2}}(x,y), \ \forall x,y \in \mathbb{R}^{n}$$

and deduce the equivalence of d_{l^1} and $d_{l^{\infty}}$ on \mathbb{R}^n .

Hint: use (C-S) when it is needed.

Exercise 4 (From Tao).

(1) Let (X, d) be a metric space, let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ two sequences in X and $x, y \in X$. Suppose that $(x_n)_{n \in \mathbb{N}}$ converges w.r.t. d to x and $(y_n)_{n \in \mathbb{N}}$ converges w.r.t. d to y. Show that $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)$.

Hint: use the triangle inequality several times.

(2) Draw the unit balls in \mathbb{R}^2 w.r.t. the metrics d_{l^1} , d_{l^2} , $d_{l^{\infty}}$ and d_{disc} . Explain/sketch the unit ball w.r.t. d_{l^3} .