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Exercise 1 (Guessing game – 6.5+6.5=13 points).

Two players, PI and PII play a game. Each of them chooses one number from the set {1, . . . , n}
(n ≥ 1 is a given integer). If they choose the same number, then PI pays PII $1, otherwise there is no
money exchange.

Part 1 We assume that PII would like to maximize his expected payoff and PI would like to minimize
her loss.

(1) To which category does this game belong to? Justify!

(2) Write down the payoff matrix of this game.

(3) Can we look for Nash equilibria for this game? Why or why not?

(4) Show that there are no pure Nash equilibria for this game.

(5) Show that there is a unique fully mixed Nash equilibrium and find this.

(6) Compute and interpret the value of the game.

Solution.
(1) This is a 0-sum 2-person game, since the gain of a player is the loss of the other.
(2) The payoff matrix is the identity matrix in Rn. PII operates the rows and PI the columns for

instance.
(3) Yes, Nash equilibria are optimal strategies, and von Neumann’s theorem ensures the existence of

these. On the other hand, this is a particular case of a general sum game, so Nash’s theorem also implies
this existence.

(4) The matrix has no saddle point, so there cannot be pure optimal strategies. Another way to see
this is to suppose that there exists a pure Nash equilibrium of the form (x∗, y∗), where x∗ has a 1 entry
at position i and y∗ a 1 entry at position j. The value of the game is 1 if i = j and 0, if i 6= j. By the
definition one should have for all x, y ∈ ∆n that

(x∗)>Iny
∗ ≥ x>Iny∗ = xj

and
(x∗)>Iny

∗ ≤ (x∗)>Iny = yi,

which is contradictory in both cases, so there are no pure Nash equilibria.
(5) One can find the fully mixed Nash equilibria simply by the equalizing payoffs method. If we do so,

we obtain that x∗1 = · · · = x∗n from where x∗ = (1/n, . . . , 1/n). Similarly, y∗ = (1/n, . . . , 1/n). Actually,
by finding it by equalizing payoffs, it turns out that it is unique (otherwise, it there would exists another
pair with different entries, from the p.o.v. of PII one could improve the value by considering higher
weights to the entries which are higher, which would be contradictory).

(6) The value of the game for the pair (x∗, y∗) found in (5) is n ·1/n2 = 1/n. This means that playing
the game a large number of times, using the optimal strategies PII can ensure a win of at least $ 1/n,
while PI can ensure at most $ 1/n.
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Part 2 Imagine that PI and PII are playing the same game as before, but PI would like to be as
generous as possible (for instance her payments to PII will be used as charity), so instead of minimizing
her cost, she would like to maximize it (we suppose that she has a lot of money). This means that
whenever they choose the same numbers, the payoffs for both will be $1.

(1) To which category does this new game belong to? Justify!

(2) Write down the new payoff matrix for this game.

(3) Is it still possible to find Nash equilibria for this game? Why or why not?

(4) Is this game a symmetric game? Why or why not?

(5) Find all pure Nash equilibria for this game. How many are there? Are they symmetric? Check by
the definition that these are indeed equilibria.

(6) Find a fully mixed Nash equilibrium for this game, and check whether it is indeed a Nash equilib-
rium. Is it unique? Justify your answer!

Solution.
(1) Now this will be a 2-person general sum game, since the gain of a player is not the loss of the

other.
(2) The payoff matrices for both players are A = B = In, the identity matrix of Rn. In Part 1 (if

regarded as a general sum game), the payoff matrix of PI was actually −In, while the payoff matrix of
PII was In.

(3) Yes, Nash’s theorem ensures this.
(4) Yes, it is, since A = B>.
(5) By the same argument as in Part 1(4), one has that actually all pairs (x∗, y∗) for which both

have an entry 1 at the same position j are pure Nash equilibria. Indeed,

1 = (x∗)>Iny
∗ ≥ x>Iny∗ = xj

and this holds true for each x ∈ ∆n. Since the matrix for the other player is exactly the same, one needs
to check exactly the same inequality, so one can conclude that all these (n pairs) are Nash equilibria.

(6) The only candidate for a fully mixed Nash equilibrium is found by equalizing payoffs, meaning
that x∗ = (1/n, . . . , 1/n) = y∗. Let us use the definition, take x ∈ ∆n and compute

1/n = (x∗)>Iny
∗ ≥ x>Iny∗ = 1/n

n∑
i=1

xi = 1/n,

and once again the second inequality needs the same computations, so one concludes.
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Exercise 2 (A general sum game – 12 points).

Let us consider a general sum game described by the matrix(
(a, a) (b, c)
(c, b) (d, d)

)
with the convention that both players are maximizing. Here a, b, c, d are given distinct real numbers.
Find one particular evolutionary stable strategy in the following situations (1)-(4). Hint: first find the
symmetric Nash equilibria, then check whether they produce evolutionary stable strategies or not.

(1) a > c and b > d, find a pure evolutionary stable strategy.

(2) a > c, find a pure evolutionary stable strategy.

(3) d > b, find a pure evolutionary stable strategy.

(4) a = −1; b = 4; c = 0 and d = 2, find a fully mixed evolutionary stable strategy.

(5) Write the corresponding correlated equilibria in cases (1) and (4).

Solution.
Notice that the above game is symmetric and let us use the notation

A =

(
a b
c d

)
= B>.

First, let us write the definitions the evolutionary stable strategies. x ∈ ∆2 is evolutionary stable if
∀ z ∈ ∆2, x 6= z, pure strategy one has

(i) x>Ax ≥ z>Ax, and (ii) if z>Ax = x>Ax, then z>Az < x>Az.

The (i) part of the definition implies that one is interested only in symmetric Nash equilibria, only these
ones produce evolutionary stable strategies.

In the case of (1), one clearly has a domination, so ((1, 0); (1, 0)) is clearly a symmetric NE. Set
x = (1, 0). Then one has x>Ax = a, where for any z = (z1, z2) ∈ ∆2 pure one has z>Ax = az1 + cz2.
Since z 6= x, this latter quantity is strictly smaller than a, so x = (1, 0) is evolutionary stable.

In the case of (2) one does not have a domination. Nevertheless, one can check that once again
((1, 0); (1, 0)) is a pure NE. Indeed, setting x = (1, 0), one has that x>Ax = a, while for any any
z = (z1, z2) ∈ ∆2 one has z>Ax = az1 + cz2 < a(z1 + z2). Notice that here one only needs the inequality
a > c. So in particular (1) is a particular case of (2). Since the above inequality is strict, the inequality
(ii) in the definition is satisfied once again, hence x = (1, 0) is evolutionary stable

Case (3) is similar to (2). Here one can check that ((0, 1); (0, 1)) is a symmetric NE. Indeed, setting
x = (0, 1), one has x>Ax = d, while for any other z ∈ ∆2, z

>Ax = bz1 + dz2 < d whenever z 6= x. Once
again, this implies that (x, x) is a NE, while (i) holds with a strict inequality, hence once does not have
to check (ii). This implies that x is evolutionary stable.

(4) These inequalities suggest, that one need to look for a fully mixed NE. By the equalizing payoffs
method, one finds that if (Ax)1 = (Ax)2, which implies that x1a+ x2b = x1c+ x2d from where knowing
that x2 = 1− x1, one has that

x1 =
d− b

a− c+ d− b
=

2

3
,

from where

x2 =
a− c

a− c+ d− b
=

1

3
.

Let us check that x = (x1, x2) is evolutionary stable. First

x>Ax = (2/3; 1/3) · (2/3; 2/3) =
2

3
.
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Then z>Ax = (z1; z2) · (2/3; 2/3) = 2/3. This means that (i) holds true with an equality. So let us check
(ii).

z>Az = (z1; z2) · (4z2 − z1; 2z2) = z1(4z2 − z1) + 2z22

and
x>Az = (2/3; 1/3) · (4z2 − z1; 2z2) = (4z2 − z1)2/3 + 2z2/3,

so plugging in z = (1, 0) in the previous two expressions, we get −1 < −2/3 and when z = (0, 1) then
2 < 10/3, so x = (2/3; 1/3) is an evolutionary stable strategy indeed.

(5) The correlated equilibria in (1) and (4) associated to the NE are(
1 0
0 0

)
and

(
4
9

2
9

2
9

1
9

)

respectively.
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Exercise 3 (Frogs – 10 points).

Red and blue frogs are located on a 1× n strip of squares (n > 1 is a given natural number which is
at least the number of the frogs) such that a frog occupies always a single square. At the beginning of
the game, all the red frogs are on consecutive squares on the leftmost end, while all the blue frogs occupy
consecutive squares on the rightmost end of the strip. Two players are playing, at a turn PI is allowed
to move only a red frog, and PII is allowed to move only a blue frog. PI at his turn should move a red
frog to the right with exactly one square, if the square at the right of this frog is empty, or if there is a
blue frog exactly at the right of this frog, and the square at the right of this blue frog is empty, then the
red frog can jump over the blue frog to occupy the empty square. A red frog can never jump over a red
frog, and it can jump only over a single blue frog, if there is an empty space at the right of this blue frog.
Symmetric rules apply to PII at her turn, she should move exactly one blue frog from the right towards
to the left, with the same rules: a blue frog can move only to the next left square, if it is empty, or if it
occupied by a red frog, it can jump over it, if the next square on the left is empty. Blue frogs can never
jump over blue frogs, and it can jump over a single red one, if there is place next to it. The player who
cannot move loses.

(1) To which game category does this game belong to? Is it progressively bounded? Does there exist
a winning strategy for one of the players for any initial configuration? Why or why not?

(2) If n = 3 and there it only one red and one blue frog, which are the terminal positions of the game?
Which of the players has a winning strategy? Find this winning strategy!

(3) If n ≥ 3 is general, and there is only one red and one blue frog, which of the players has a winning
strategy? Find this strategy!

(4) Let us assume that the number of the red frogs is equal to the number of blue frogs and it is m ≥ 2
and let n = 2m+1. Find the terminal position of the game. Who has a winning strategy? Describe
this winning strategy.

(5) The same questions as in (4), with m = 2 and n = 2m+ 2.

Solution.
(1) This is a partisan combinatorial game, since all the possible moves are not the same for everyone

and the winning positions also differ. It is progressively bounded, since every frog can travel at most n
squares, and the number of the frogs is bounded, and so is n. Notice that there cannot be tie, hence
Zermelo’s theorem implies that there is a winning strategy for one of the players.

(2) The terminal position in this case if when the blue frog is on the leftmost square and the red frog
is on the leftmost square. The game has only one way to go. Let us denote the initial game positions as
{R,�, B}. Then the only possible way to proceed is

{R,�, B} → {�, R,B} → {B,R,�} → {B,�, R},

hence PII cannot move, so PI wins.
(3) The game in this situation as well goes as in (2). If n is even, the PII wins, and if n is odd PI

does. Indeed, if n is even, then the frogs meet in the middle. For the next move a the red frog must jump
over the blue frog, hence the red frog has one less square to complete, so PI with the red frog reaches the
rightmost square before PII reaches the leftmost end, so at at his turn cannot move, so PI loses.

When n is odd, then after a while they arrive to the situation described in (2), with PI on turn, so in
this case PII loses and PI wins.

(4) In this case as well, the solution is straight forward, since after each move there is only one empty
square, it is clear who will win. Let us illustrate this below in the case of m = 2

{R,R,�, B,B} → {R,�, R,B,B} → {R,B,R,�, B} → {R,B,�, R,B} → {R,B,B,R,�} → {R,B,B,�, R},
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in this case PII cannot move on her turn, so PI wins. The case of general m is completely analogous, as
some point all the blue frogs will be blocked within m − 1 red frogs and and a red frog on their right,
which will move to the destination after which no blue frog can move.

(5) This question is trickier. Actually PI has a winning strategy, by moving his rightmost frog always
as forward as possible. One can draw a tree structure to find out the exact strategy that leads to the
victory (the answer is not complete without this kind of tree structure).
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Exercise 4 (Pancake problem – 9 points).

Let us suppose that one has a bounded two dimensional homogeneous convex pancake in R2.

(1) Show that for any given direction in R2, there exists a cutting (modeled by a straight line with the
given direction) that divides the pancake in two parts of the same area. Hint: use the intermediate
value theorem.

(2) Suppose that there is another pancake with the same properties as the previous one, which is not
overlapping the first one. Show that there exists a line that divides both pancakes into two parts
of the same area. Hint: use (1) to divide first the first one into 2 pieces of the same area, then try
to use some rotations.

(3) Give an example of 3 non-overlapping pancakes in R2 such that there exists no single line that
divides the 3 pancakes at the same time into 2 parts of same area.

(4) In the case of a single pancake, show that there exists two perpendicular lines that divide the
pancake into 4 different parts of the same area. Hint: use (1).

Solution.
We suppose that the pancake is modeled by a smooth bounded set in R2 (meaning that it is the

closure of a bounded open set for instance).
(1) For each direction, if we consider a line with that direction that does not intersect the set, one

can continuously translate this line in the direction of its perpendicular direction until it intersects the
set, then the set becomes on the “other side” of the line. If we consider cuttings w.r.t. these lines, in
the very first scenario one had a part with 0 area, and a part with the full area. Since these translations
are continuous, by the intermediate value theorem for some intermediate line we will have two parts with
half of the area both.

(2) Choose a line (with a given direction) that divides the first pancake into two parts of the same
area that does not intersect the second pancake. Now start rotating this direction, to any such a direction
one can associate a line that cuts the first pancake into two parts of same area, but which might intersect
or not the second pancake. Now, smoothly rotating these directions, one finds in particular two lines
that cut the second pancake into a 0 and a full piece on the one hand, and into a full piece and 0 piece
on the other hand. Now considering only those lines that cut the first pancake into two parts of equal
area, there exists for sure a line between those two last extreme ones that cut the second one also in half
(using once again the intermediate value theorem).

(3) Just take disks of radius 1 around the points (0, 0), (0, 10) and (10, 0) in R2, clearly these cannot
be intersected all by a single straight line.

(4) Clearly, for any given two perpendicular directions one can find to lines (which are perpendicular)
such that both divide the pancake into two parts of same area. However, it is not sure yet that that four
parts are all the same area. What is sure that “opposite parts” have the same area. To see this, let us
denote the fours parts by A,B,C,D (in a clockwise direction), such that denoting the whole pancake
with 100, A+B = C +D = 50 and A+ C = B +D = 50. Now simple algebra tells us that A = D and
B = C. But all of them might be not the same area though. However rotating now the two directions
with π/2, for any two perpendicular intermediate directions one has the previous property. Moreover, at
the end of the rotation, basically the two original lines changes roles, so the “larger pieces” become the
“smaller pieces”, hence by the intermediate value theorem, there were two lines in the rotation procedure,
where all the four pieces have the same area.
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Exercise 5 (On man and lion – 6 points).

We consider the game man and lion: a man and a lion are enclosed in a circular arena (modeled by
the unit disk in R2), the lion is hungry, so he wants to catch the man. The man doesn’t want to serve as
lunch, so he would like to escape. Both can control their velocities, which are basically their strategies
to be chosen at each instant of time. Both of them have an upper bound on their speeds, but since they
might be tired or more motivated achieving their goals, these upper bounds may vary in time.

Suppose that there are given M,L : [0,+∞) → [0,+∞) bounded continuous functions, such that
M(t) and L(t) represents the maximal speed at which the man and the lion respectively can run at time
t ∈ [0,+∞). We know that the man gets tired faster than the lion, so there exists a time t∗ ∈ (0,+∞)
such that

M(t) < L(t), for all t ≥ t∗.

Before the time t∗, the man might run faster. Supposing that the initial positions are not the same, show
that the lion can catch the man in finite time and give an upper bound for the catching time in terms of
their initial distance, t∗ and some expression of M and L.

Solution.
Let us denote the trajectory of the man by x : [0,+∞)→ D and the one of the lion by x : [0,+∞)→ D,

where D denotes the unit disk in R2. They both can control their velocities, so the trajectories are
governed by the system of ODEs {

ẋ(t) = u(t, x(t), y(t))
ẏ(t) = v(t, x(t), y(t))

Here u, v : [0,+∞) × D × D → D are (say continuous) functions such that ‖u(t, ·, ·)‖ ≤ M(t) and
‖v(t, ·, ·)‖ ≤ L(t) for all t ≥ 0.

To show that the lion can catch the man in finite time, it is enough to describe a strategy that allows
him to do so. This is to go always in the direction of the man, i.e. let us choose

v(t, x, y) =
x− y
‖x− y‖

L(t).

Let us compute using this v the following quantity

d

dt
‖x(t)− y(t)‖2 = 2(x(t)− y(t)) · (ẋ(t)− ẏ(t)) = 2(x(t)− y(t)) · [u(t, x(t), y(t))− v(t, x(t), y(t))]

≤ 2‖x(t)− y(t)‖M(t)− 2‖x(t)− y(t)‖L(t) = 2(M(t)− L(t))‖x(t)− y(t)‖.

From here, dividing both sides by 2‖x(t)− y(t)‖, one obtains

d

dt
‖x(t)− y(t)‖ ≤M(t)− L(t)

which integrating between 0 and T > t∗ yields

‖x(T )−y(T )‖ = ‖x(0)−y(0)‖+
∫ T

0

M(t)−L(t)dt = ‖x(0)−y(0)‖+
∫ t∗

0

M(t)−L(t)dt+

∫ T

t∗
M(t)−L(t)dt.

Now since by the condition M(t) + c < L(t), ∀t ≥ t∗, one has that∫ T

t∗
M(t)− L(t)dt ≤ −c

∫ T

t∗
dt = −c(T − t∗).

This implies that catching occurs in at most T time, where T is such that

‖x(0)− y(0)‖+

∫ t∗

0

M(t)− L(t)dt ≤ c(T − t∗)
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