Math 32B-2: Calculus of Several Variables – Homework #4

Instructor: Alpár R. Mészáros Due: April 26, 2019

Exercise 1 (From Rogawski-Adams).

- (1) Find a mapping G that maps the disk $u^2 + v^2 \le 1$ onto the interior of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1$. Then use the change of variables formula to prove that the area of the ellipse is πab .
- (2) Compute the area of the region enclosed by the ellipse $x^2 + 2xy + 2y^2 4y = 8$ as an integral in the variables u = x + y, v = y 2.
- (3) Use the change of variables formula in three variables to prove that the volume of the ellipsoid $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$ is equal to $abc \times$ the volume of the unit sphere.

Exercise 2 (From Rogawski-Adams).

Sketch the region D and integrate f(x,y) over D using polar coordinates.

- (1) $f(x,y) = y(x^2 + y^2)^3$; $y \ge 0$, $x^2 + y^2 \le 1$.
- (2) $f(x,y) = e^{x^2+y^2}$; $x^2 + y^2 \le R$, R > 0 is given.

(3)
$$\int_0^3 \int_0^{\sqrt{9-y^2}} \sqrt{x^2 + y^2} \, \mathrm{d}x \, \mathrm{d}y$$

(4)
$$\int_0^2 \int_x^{\sqrt{3}x} y \, dy \, dx$$
.

Exercise 3 (From Rogawski-Adams).

- (1) Let W be the region above the sphere $x^2 + y^2 + z^2 = 6$ and below the paraboloid $z = 4 x^2 y^2$.
 - (a) Show that the projection W on the xy-plane is the disk $x^2 + y^2 \le 2$.
 - (b) Compute the volume of W using polar coordinates.
- (2) Use cylindrical coordinates to calculate the integral of the function f(x, y, z) = z over the region above the disk $x^2 + y^2 \le 1$ in the xy-plane and below the surface $z = 4 + x^2 + y^2$.
- (3) Use cylindrical coordinates to calculate $\int \int \int_W f(x,y,z) \, dV$ for f(x,y,z) = xz, where

$$x^2 + y^2 \le 1, \ x \ge 0, \ 0 \le z \le 2.$$

(4) Use spherical coordinates to calculate the triple integral of $f(x, y, z) = x^2 + y^2 + z^2$ over the region

$$1 < x^2 + y^2 + z^2 < 4$$
.

Exercise 4 (From Rogawski-Adams).

- (1) Use cylindrical coordinates to find the volume of a sphere of radius a from which a central cylinder of radius b has been removed, where $0 \le b \le a$.
- (2) Use cylindrical coordinates to find the volume of the region bounded below by the plane z = 1 and above by the sphere $x^2 + y^2 + z^2 = 4$.