Math 32B-1: Calculus of Several Variables – Homework #6

Instructor: Alpár R. Mészáros Due: May 10, 2019

Exercise 1 (Based on Rogawski-Adams).

Compute the line integrals $\int_C f \, ds$ of the following functions on the specified curves

- (1) $f(x,y) = \frac{y^3}{x^7}$; and C is given by $y = (1/4)x^4$ for $1 \le x \le 2$.
- (2) f(x, y, z) = 3x 2y + z; r(t) = (2 + t, 2 t, 2t) where $-2 \le t \le 1$.
- (3) $f(x, y, z) = x^2 z; r(t) = (e^t, \sqrt{2}t, e^{-t})$ where $0 \le t \le 1$.

Exercise 2 (Based on Rogawski-Adams).

Compute the line integrals $\int_C F \cdot dr$ of the following vector fields on the specified curves

- (1) $F(x, y, z) = (z^2, x, y)$ and C is given by $r(t) = (3 + 5t^2; 3 t^2, t)$ for $0 \le t \le 2$.
- (2) $F(x, y, z) = (xy, 2, z^3)$ on the Helix given by $r(t) = (\cos(t), \sin(t), t)$ for $t \in [0, \pi]$.
- (3) F(x,y) = (4,y) on the quarter of the circle $x^2 + y^2 = 1$ with $x \le 0, y \ge 0$, oriented clockwise.

Exercise 3 (Based on Rogawski-Adams).

Compute $\int_C F \cdot dr$ for the following oriented curves:

- (1) $F(x,y) = (e^{y-x}, e^{2x})$, piecewise linear path from (1,1) to (2,2) to (0,2).
- (2) $F(x,y) = \left(\frac{-y}{(x^2+y^2)^2}, \frac{x}{(x^2+y^2)^2}\right)$, circle of radius R with center at the origin oriented counterclockwise.
- (3) $F(x, y, z) = (z^3, yz, x)$, quarter of the circle of radius 2 in the yz-plane with center at the origin where $y \ge 0$ and $z \ge 0$, oriented clockwise when viewed from the positive x-axis.
- (3) $F(x, y, z) = (e^z, e^{x-y}, e^y)$, the closed path between (0, 0, 6), (0, 4, 0) and (2, 0, 0).

Exercise 4 (Based on Rogawski-Adams).

- (1) Calculate the total mass of a metal tube in the helical shape $r(t) = (\cos t, \sin t, t^2)$ (distance in centimeters) for $0 \le t \le 2\pi$ if the mass density is $\delta(x, y, z) = \sqrt{z}$ g/cm.
- (2) Calculate the work done by the field F(x, y, z) = (x, y, z) when the object moves along $r = (\cos t, \sin t, t)$ for $0 \le t \le 3\pi$.
- (3) Calculate the work done by the field $F(x, y, z) = (e^x, e^y, xyz)$ when the object moves along $r = (t^2, t, t/2)$ for $0 \le t \le 1$.
- (4) Let F(x,y) = (y,x). Prove that if C is any path from (a,b) to (c,d), then $\int_C F \cdot dr = cd ab$.