- 1 Express the following complex numbers in the form x + iy with x, y real: (a) $\frac{(1+2i)(5+2i)}{(2-3i)(1-i)}$, (b) $\frac{1+4i}{1-i} + \frac{1-4i}{1+i}$.
- 2 Evaluate the product (1 + i)i(1 + i), first in the "usual algebraic way", then by writing i and 1 + i in polar form.
- 3 Write the following complex numbers in polar form: (a) $2 - i2\sqrt{3}$, (b) $\frac{1}{2+i} - \frac{1}{2-i}$, (c) $\frac{2-i2\sqrt{3}}{1+i}$.
- 4 Find all complex numbers z for which: (a) $|\operatorname{Re}(z)| = |z|$, (b) $\operatorname{Im}(z) = |z|$, (c) $|z|^2 = z^2$.

5 If
$$w = \frac{z-1}{z+1}$$
 show that $\operatorname{Re}(w) = \frac{|z|^2 - 1}{|z|^2 + 2Re(z) + 1}$ and $\operatorname{Im}(w) = \frac{2Im(z)}{|z|^2 + 2Re(z) + 1}$

6 Show that (a) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. (b) $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$.

[You could prove these directly by using the definition of conjugation, but there are nicer ways: For (a) note complex conjugation viewed as a reflection in \mathbb{R}^2 is a linear map. For (b), you could use the fact that $\overline{z_1 z_2}(z_1 z_2) = |z_1 z_2|^2$.]

7 For each pair of complex numbers z_1 and z_2 prove the parallelogram identity:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

Interpret this equation geometrically.

- 8 What is the geometric meaning of the following functions f(z) as transformations $z \mapsto f(z)$ from \mathbb{C} to \mathbb{C} ? (a) f(z) = 2z, (b) f(z) = -z, (c) f(z) = (1+i)z, (d) $f(z) = -\overline{z}$, (e) f(z) = z/|z|, (f) f(z) = 1 - i + z, (g) f(z) = 1 - i + (1+i)z.
- 9 Draw the following sets of points in the complex plane.

(a)
$$z + \bar{z} = 2$$
, (b) $z - \bar{z} = 3i$, (c) $|\bar{z}| = 1$, (d) $|z - i| = 1$.

10 Solve the following equations in complex numbers, and mark the solutions on a picture of the complex plane:

(a)
$$|z+2| = |z-2|$$
, (b) $\bar{z} = 1/z$, (c) $z = \frac{\text{Re}z + \text{Im}z}{2}$, (d) $|(z-2)(\bar{z}-2)| = 1$.

- 11 What do the following equations represent geometrically? Give sketches. (i) |z+2| = 6 (ii) |z-3i| = |z+i| (iii) |iz-1| = |iz+1| (iv) $|z+1-i| = |\overline{z}-1-i|$.
- $\begin{array}{ll} \mbox{12 Describe geometrically the subsets of \mathbb{C} specified by} \\ (i) \mbox{ Im}(z+i) > 2 & (ii) \mbox{ 1 < Re} \ z \leq 2 & (iii) \ |z-1-i| > 1 \\ (iv) \ |z-1+i| \geq |z-1-i| & (v) \ |z+2-i| < |iz-1+2i| & (vi) \mbox{ 1 < } |z-1| < 2. \end{array}$
- 13 Show that the equation |z − a| = λ|z − b|, where a and b are complex numbers and λ > 0, describes a circle in the complex plane if λ ≠ 1. [In fact, every circle in the complex plane can be written in this form!] What geometric figure is represented when λ = 1?
- 14 (i) Apply induction to show De Moivre's formula: (cos(x) + i sin(x))ⁿ = cos(nx) + i sin(nx).
 (ii) Use this to write cos(3x) as a polynomial in cos(x); namely show that cos(3x) = 4 cos³(x) 3 cos(x).
- 15 Write $(1 + i\sqrt{3})^{100}$ in x + iy form.

16 Show that the inverse of the stereographic projection $P : \mathbb{S}^2 \setminus \{N\} \to \mathbb{C}$ is given by

$$P^{-1}(z) = \left(\frac{2\operatorname{Re}(z)}{1+|z|^2}, \frac{2\operatorname{Im}(z)}{1+|z|^2}, \frac{|z|^2-1}{1+|z|^2}\right).$$

17 Consider the inverse stereographic projection $P^{-1}: \mathbb{C} \to \mathbb{S}^2 \setminus \{N\}$.

(a) Show that P^{-1} takes the circle $\{z \in \mathbb{C} \mid |z| = c\}$, where c > 0 is a given positive number, to a circle on $\mathbb{S}^2 \setminus \{N\}$ that is parallel to the xy-plane.

(b)* Explain geometrically why the image of the line $a \operatorname{Re}(z) + b \operatorname{Im}(z) = 0$, where $a, b \in \mathbb{R}$ are not both zero, by P^{-1} lies on a great circle on $\mathbb{S}^2 \setminus \{N\}$ that passes via the south pole (in fact – it is the entire circle).

18 Show that $P^{-1}(z) = -P^{-1}(w)$ (i.e. the point $P^{-1}(z)$ and $-P^{-1}(w)$ are diametrically opposite on the Riemann sphere) if and only if $w = -\frac{1}{\overline{z}}$.