- 1 Show that the ℓ_1 -norm and the ℓ_∞ -norm do define norms on both \mathbb{R}^n and \mathbb{C}^n (so give rise to metric spaces).
- 2 Given a finite dimensional real [or complex] vector space V with a (positive definite) inner product $\langle . \rangle$, let

$$d(v,w) := \sqrt{\langle v - w, v - w \rangle}$$

for $v, w \in V$. Show directly that d is a metric on V. [Hint: for property (D3) use Cauchy-Schwarz.]

3 In the space C([a, b]) of continuous functions defined on a closed interval [a, b] (for a < b), let

$$d_1(f,g) := \int_a^b |f(t) - g(t)| dt$$

Show that d_1 is a metric on C([a, b]).

- 4 Consider the space C([a, b]) of continuous functions on an interval [a, b].
 - (a) Show that

$$d(f,g) := \max_{x \in [a,b]} |f(x) - g(x)|, \quad f,g \in C([a,b]),$$

defines a metric on C([a, b]).

- (b) Let $f(x) = x^2 + 7x 3 \in C([-1, 1])$. Describe the open ball $B_2(f)$ and the closed ball $\overline{B}_2(f)$.
- 5 (i) Let S be any non-empty set. Verify that the standard discrete metric is indeed a metric on S. Hence or otherwise, show that for any $n \in \mathbb{N}$ the function

$$d_n(x, y) := \#\{j : 1 \le j \le n \text{ and } x_j \ne y_j\}, \qquad (x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \text{ with } x_i, y_i \in S\}$$

defines a metric on $S^n := S \times \cdots \times S$ (*n* times). Here, '#A' denotes the number of elements in a set A. [When $S = \{0, 1\}$ the metric d_2 is the so-called **Hamming metric** in communication theory.]

- (ii) When $S = \mathbb{R}$ and n = 2, describe the ball $B_r((0,0))$ in the cases (a) r < 1; (b) r > 2; (c) $1 \le r \le 2$.
- 6 For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 define the 'Jungle river' metric on \mathbb{R}^2 by

$$d(\boldsymbol{x}, \boldsymbol{y}) := \begin{cases} |x_2 - y_2| & \text{if } x_1 = y_1. \\ |x_2| + |y_2| + |x_1 - y_1| & \text{if } x_1 \neq y_1. \end{cases}$$

- (i) Describe geometrically how d measures the distance between two points in \mathbb{R}^2 and verify it is a metric.
- (ii) Sketch the open balls $B_1(0)$ and $B_4((3,2))$ in \mathbb{R}^2 with respect to this metric.
- 7 (i) Show that in any metric space (X, d) the set $\{x\}$, consisting of a single point $x \in X$, is closed.
 - (ii) Show that in any metric space (X, d) the closed ball $\overline{B}_r(x) := \{y \in X : d(y, x) \le r\}$, of radius r > 0 centred at $x \in X$, is closed.
- 8 Verify that $\mathbb{H} = \{x + iy \in \mathbb{C} \mid x \in \mathbb{R}, y > 0\}$ and $\mathbb{C}^* = \{z \in \mathbb{C} \mid z \neq 0\}$ and $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ are open subsets of \mathbb{C} , but the set $\mathbb{C} \setminus \mathbb{R}_{<0}$ is neither open nor closed in \mathbb{C} .
- 9 Let (X, d) be a metric space. Show that X is "Hausdorff"; that is, for any pair of distinct points x and y in X there exist open sets U and V such that x is in U, y is in V, and $U \cap V = \emptyset$. (So in metric spaces we can separate points by open sets.)

10 Let A be a subset of a metric space X. As in lectures, we define the interior A^0 of A by

 $A^0 := \{x \in A : \text{ there exists an open set } U \subseteq A \text{ such that } x \in U\}.$

(i) Clearly the interior A^0 is open. Show that it is the largest open subset of A; precisely, show that if U is open and $U \subseteq A$ then $U \subseteq A^0$. Deduce that A^0 is the union of all open subsets of A; that is,

$$A^0 = \bigcup_{\substack{U \subseteq A \\ U \text{ open}}} U.$$

- (ii) Show that for any two subsets A, B ⊆ X we have A⁰ ∪ B⁰ ⊆ (A ∪ B)⁰. Write down the interior of the interval [2,3) in ℝ. Hence or otherwise, give an example of two subsets of ℝ for which we have A⁰ ∪ B⁰ ≠ (A ∪ B)⁰.
- 11 Let A be a subset of a metric space X. We define the *closure* \overline{A} of A by

 $\overline{A} = \{ x \in X : U \cap A \neq \emptyset \text{ for all open sets } U \text{ containing } x \}.$

- (i) Show that $\overline{A} = \{x \in X : \inf_{z \in A} d(x, z) = 0\}.$
- (ii) Show directly from the definition that \overline{A} is closed.
- 12 Consider \mathbb{R} together with the usual metric coming from the absolute value. Show:
 - (i) The set $\{x\}$, where $x \in \mathbb{R}$ is given, is not open.
 - (ii) All open intervals are open, all closed intervals are closed.
 - (iii) Infinite intersections of open sets are not necessarily open.
 - (iv) The interval (0, 1] is neither open nor closed. What is its closure?
- 13 Give an example of a metric space X and an $x \in X$ such that $\overline{B}_1(x) \neq \overline{B}_1(x)$; that is, the closure of the open ball is not necessarily the closed ball!!
- 14 Let A be a subset of a metric space X. Show that We may define the *boundary* ∂A of A by
 - (i) $\partial A = \{x \in X : \text{ for all open sets } U \text{ containing } x, \text{ there exist } y, z \in U \text{ with } y \in A \text{ and } z \in A^c\}.$
 - (ii) a set A is open if and only if $\partial A \cap A = \emptyset$;
 - (iii) A is closed if and only if $\partial A \subseteq A$.

15 Show that if a sequence $\{x_n\}$ converges in a discrete metric space, then it is eventually constant.