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Q.1 Show that the ℓ1-norm and the ℓ∞-norm do define norms on both Rn and Cn (so give rise to metric spaces).

S.1 Nonnegativity (N1) for both norms is obvious (for either Rn or Cn). For either Rn or Cn we have ∥λx∥1 =∑n
i=1 |λxi| = |λ|

∑n
i=1 |xi| = |λ| · ∥x∥1, so the ℓ1-norm satisfies (N2). Also ∥λx∥∞ = maxni=1 |λxi| =

|λ|maxni=1 |xi| = |λ| · ∥x∥∞ so the ℓ∞-norm satisfies (N2). Here, λ ∈ R or C as required. Finally, for
either Rn or Cn we have

∥x+ y∥1 =
n∑

i=1

|xi + yi| ≤
n∑

i=1

|xi|+
n∑

i=1

|yi| = ∥x∥1 + ∥y∥1;

∥x+ y∥∞ = max
i

|xi + yi| ≤ max
i

(|xi|+ |yi|) ≤ max
i

|xi|+max
i

|yi| = ∥x∥∞ + ∥y∥∞;

since the absolute value/modulus (on R or C) satisfies the triangle inequality. Thus, both norms satisfy (N3)
as required.

Q.2 Given a finite dimensional real [or complex] vector space V with a (positive definite) inner product ⟨ . ⟩, let

d(v, w) : =
√

⟨v − w, v − w⟩

for v, w ∈ V . Show directly that d is a metric on V . [Hint: for property (D3) use Cauchy-Schwarz.]

S.2 Recall that a (positive definite) inner-product on a real [or complex] vector space satisfies the following
properties for vectors u, v, w ∈ V :

(I1) ⟨u+ v, w⟩ = ⟨u,w⟩+⟨v, w⟩ and ⟨λv,w⟩ = λ ⟨v, w⟩ for λ ∈ R (or C) (linearity in 1st component)

(I2) ⟨v, w⟩ = ⟨w, v⟩ [or ⟨v, w⟩ = ⟨w, v⟩ if complex vector space]. (symmetry)

(I3) ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 ⇐⇒ v = 0 (positive definiteness)

Properties (D1) and (D2) for d are obvious (they follow from the (I3) and (I2) respectively). Recall also the
Cauchy-Schwarz inequality: | ⟨v, w⟩ | ≤

√
⟨v, v⟩ ·

√
⟨w,w⟩. Thus, for u, v, w ∈ V we have d(v, w)2 equals

to

⟨v − w, v − w⟩ = ⟨(v − u) + (u− w), (v − u) + (u− w)⟩
(I1)
= ⟨v − u, v − u⟩+ ⟨v − u, u− w⟩+ ⟨u− w, v − u⟩+ ⟨u− w, u− w⟩

(I2)
≤ ⟨v − u, v − u⟩+ 2| ⟨v − u, u− w⟩ |+ ⟨u− w, u− w⟩

C-S
≤ ⟨v − u, v − u⟩+ 2

√
⟨v − u, v − u⟩ ·

√
⟨u− w, u− w⟩+ ⟨u− w, u− w⟩

=
(√

⟨v − u, v − u⟩+
√
⟨u− w, u− w⟩

)2
= (d(v, u) + d(u,w))2

and so (D3) holds.

Q.3 In the space C([a, b]) of continuous functions defined on a closed interval [a, b] (for a < b), let

d1(f, g) :=

∫ b

a
|f(t)− g(t)| dt.

Show that d1 is a metric on C([a, b]).

S.3 Note |f(t) − g(t)| ≥ 0 so that
∫ b
a |f(t) − g(t)| dt ≥

∫ b
a 0 dt = 0. Property (D1) is then obvious from the

fact from real analysis that if a continous non-negative function has zero integral over an inverval, then the
function is zero on the interval. Property (D2) is obvious. Property (D3) follows from the triangle inequality
for | . | and the linearity of integrals.

Q.4 Consider the space C([a, b]) of continuous functions on an interval [a, b].
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(a) Show that
d(f, g) := max

x∈[a,b]
|f(x)− g(x)|, f, g ∈ C([a, b]),

defines a metric on C([a, b]).

(b) Let f(x) = x2 + 7x− 3 ∈ C([−1, 1]). Describe the open ball B2(f) and the closed ball B2(f).

S.4 (a) Since |f(x) − g(x)| ≥ 0 we have that maxx∈[a,b] |f(x) − g(x)| ≥ 0. Moreover, if maxx∈[a,b] |f(x) −
g(x)| = 0 we must have that |f(x)−g(x)| = 0 for all x ∈ [a, b] or equivalently, f = g. This shows property
(D1). Property (D2) is obvious. Property (D3) follows from the fact that for any f, g and h

max
x∈[a,b]

|f(x)− g(x)| = max
x∈[a,b]

|(f(x)− h(x)) + (h(x)− g(x))|

≤ max
x∈[a,b]

(|f(x)− h(x)|+ |h(x)− g(x)|) ≤ max
x∈[a,b]

|f(x)− h(x)|+ max
x∈[a,b]

+|h(x)− g(x)|.

(b)

B2(f) = {g ∈ C([a, b]) | d (f, g) < 2} =

{
g ∈ C([a, b]) | max

x∈[a,b]
|g(x)− f(x)| < 2

}
= {g ∈ C([a, b]) | f(x)− 2 < g(x) < f(x) + 2, ∀x ∈ [a, b]} .

In other words, B2(f) is the set of all continuous functions g ∈ C([a, b]) that satisfy

x2 + 7x− 5 < g(x) < x2 + 7x− 1.

Q.5 (i) Let S be any non-empty set. Verify that the standard discrete metric is indeed a metric on S. Hence or
otherwise, show that for any n ∈ N the function

dn(x,y) := #{j : 1 ≤ j ≤ n and xj ̸= yj}, (x = (x1, . . . , xn),y = (y1, . . . , yn) with xi, yi ∈ S)

defines a metric on Sn := S × · · · × S (n times). Here, ‘#A’ denotes the number of elements in a
set A. [When S = {0, 1} the metric d2 is the so-called Hamming metric in communication theory.]

(ii) When S = R and n = 2, describe the ball Br((0, 0)) in the cases (a) r < 1; (b) r > 2; (c) 1 ≤ r ≤ 2.

S.5 (i) For the discrete metric d0(x, y) :=

{
0 if x = y,

1 if x ̸= y,
properties (D1) and (D2) are obvious. For (D3),

consider x, y, z ∈ S and consider the two cases:

• x = y: From (D1) we trivially have d(x, z) + d(z, y) ≥ 0 = d(x, y).

• x ̸= y: If z coincides with one of x or y, say x, then d(x, z) + d(z, y) = 0 + 1 = d(x, y). If z, x, y are all
distinct then d(x, z) + d(z, y) = 1 + 1 = 2 ≥ 1 = d(x, y).

For the metric dn properties (D1) and (D2) are obvious. A nice way of showing property (D3) is to notice
that

dn(x,y) =
n∑

i=1

d0(xi, yi), where d0 is the discrete metric on S.

Since d0 is a metric we have for x,y, z ∈ Sn that dn(x,y) =
n∑

i=1

d0(xi, yi) ≤
n∑

i=1

(d0(xi, zi) + d0(zi, yi)) =

n∑
i=1

d0(xi, zi) +

n∑
i=1

d0(zi, yi) = dn(x, z) + dn(z,y).

(ii) We have Br((0, 0)) = {(x1, x2) ∈ R2 : d2((x1, x2), (0, 0)) < r}.
(a) When r < 1 we must have d2((x1, x2), (0, 0)) = 0 and so Br((0, 0)) = {(0, 0)} is just the origin.
(b) We always have d2 ≤ 2, so for r > 2 the ball Br((0, 0)) = R2 is the whole space.
(c) The case r = 1 is as in (a). If 1 < r ≤ 2 we must have d2((x1, x2), (0, 0)) = 1 or 0; so either one
component is non-zero or both are. Thus Br((0, 0)) is the union of the two axes; Br((0, 0)) = {(x, 0) : x ∈
R} ∪ {(0, y) : y ∈ R}.
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Q.6 For x = (x1, x2) and y = (y1, y2) in R2 define the ‘Jungle river’ metric on R2 by

d(x,y) :=

{
|x2 − y2| if x1 = y1.

|x2|+ |y2|+ |x1 − y1| if x1 ̸= y1.

(i) Describe geometrically how d measures the distance between two points in R2 and verify it is a metric.

(ii) Sketch the open balls B1(0) and B4((3, 2)) in R2 with respect to this metric.

S.6 (i) To get from a point x = (x1, x2) to y = (y1, y2) we travel from x vertically up or down (as necessary)
to the horizontal-axis, then travel along the horizontal axis [the river!] the required distance, then travel
vertically back up or down to y. [The name comes from the idea that the quickest way to travel through a
thick jungle is to climb down the river bank to the river, sail quickly along the river, and then climb the bank
again when you get near your destination!] Properties (D1) and (D2) are obvious from analagous properties
of the absolute value. For (D3) we need to split into cases:

x1 = y1 : If z1 = x1 = y1 then, using properties (N1) and (N3) for the absolute value,

d(x, z) + d(z,y) = |x2 − z2|+ |z2 + y2|
(N3)

≥ |x2 − z2 + z2 − y2| = |x2 − y2| = d(x,y).

If z1 is distinct from x1 and y1, then

d(x, z)+d(z,y) = |x2|+|z2|+|x1−z1|+|z2|+|y2|+|z1−y1|
(N1)

≥ |x2|+|y2|
(N3)

≥ |x2−y2| = d(x,y).

x1 ̸= y1 : If z1 coincides with one of x1 and y1, say z1 = x1 then

d(x, z) + d(z,y) = |x2 − z2|+ |z2|+ |y2|+ |z1 − y1|
(N3)

≥ |x2|+ |y2|+ |z1 − y1|
(z1=x1)
= d(x,y).

Finally, if z1 is distinct from both x1 and y1 then

d(x, z) + d(z,y) = |x2|+ |z2|+ |x1 − z1|+ |z2|+ |y2|+ |z1 − y1|
(N1)

≥ |x2|+ |y2|+ |x1 − z1|+ |z1 − y1|
(N3)

≥ |x2|+ |y2|+ |x1 − y1| = d(x,y).

(ii) We have d((x1, x2), (0, 0)) =

{
|x2| if x1 = 0.

|x2|+ |x1| if x1 ̸= 0.
Thus, B1((0, 0)) is just the standard

unit ball in the ℓ1-norm - so the interior of a diamond with vertices at (1, 0), (0, 1), (−1, 0) and (0,−1).

For B4((3, 2)) we have d((x1, x2), (3, 2)) =

{
|x2 − 2| if x1 = 3.

|x2|+ 2 + |x1 − 3| if x1 ̸= 3.
In the first case

(x1 = 3) we have d < 4 iff −2 < x2 < 6; this defines a vertical line from the point (3,−2) to the point
(3, 6). In the second case (x1 ̸= 3) the inequality d < 4 defines the ball in the ℓ1-norm of radius 2
centred at (3, 0); that is, a diamond with vertices at (5, 0), (3, 2), (1, 0) and (3,−2). Thus, the ball
B4((3, 2)) looks like a diamond with a vertical line coming out of the top (from the tip (3, 2) to the
point (3, 6))!

Q.7 (i) Show that in any metric space (X, d) the set {x}, consisting of a single point x ∈ X , is closed.

(ii) Show that in any metric space (X, d) the closed ball Br(x) := {y ∈ X : d(y, x) ≤ r}, of radius r > 0
centred at x ∈ X , is closed.
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S.7 (i) We need to show that the complement of {x} is open. Take y ̸= x. We need ϵ > 0 so that the open ball
Bϵ(y) does not contain x. Simply let ϵ = s = d(x, y) > 0. Then the ball Bs(y) does not contain x.

(ii) We need to show that complement of Br(x) is open. We use a similar argument to the first part. First,
take y /∈ Br(x); i.e., take y with d(x, y) = s > r. We need an open ball Bϵ(y) such that Bϵ(y)∩Br(x) = ∅.
We claim that Bs−r(y) works (so take ϵ = s− r > 0). Assume not, then there is an element z ∈ Bs−r(y)∩
Br(x); this means that d(z, y) < s− r and d(x, z) ≤ r. But then

s = d(x, y) ≤ d(x, z) + d(z, y) < r + (s− r) = s,

which is a contradiction.

Q.8 Verify that H = {x+ iy ∈ C | x ∈ R, y > 0} and C∗ = {z ∈ C | z ̸= 0} and C \ R≤0 are open subsets of
C, but the set C \ R<0 is neither open nor closed in C.

S.8 In most cases it is straightforward. For z = x+ iy ∈ H (so y > 0) we can consider the ball By/2(z). Indeed,
if w = a+ ib ∈ By/2(z) then we have that

b = Im (w) = Im (z) + Im (w − z) = y + Im (w − z) .

Since
|Im (w − z)| ≤ |z − w| < y

2

we find that
b ≥ y − |z − w| > y − y

2
=

y

2
> 0.

As w was arbitrary we conclude that By/2(z) ⊂ H.
For z ∈ C∗ (so |z| ≠ 0) we can consider the ball B|z|/2(z). We see that for any w ∈ B|z|/2(z

|w| = |z + (w − z)| ≥ ||z| − |z − w|| > |z| − z

2
=

z

2
> 0

where we have used the reverse triangle inequality

|a− b| ≥ ||a| − |b||.

As w was arbitrary we conclude that B|z|/2(z) ∈ C∗.
For z = x+ iy ∈ C \R≤0 a little more care is needed; if y ̸= 0 (so z is not on the positive real axis) simply
pick By/2(z) ⊂ C \ R≤0 (same as with H) and if y = 0 (so z is on the positive real axis and x > 0) pick
Bx/2(z) ⊂ C \ R≤0 (same ideas as above).

Finally, consider the point 0 ∈ C \ R<0. By definition, any ball Bϵ(0) centred at 0 of radius ϵ > 0 must
contain the point z = −ϵ/2, since |(−ϵ/2)− 0| = ϵ/2 < ϵ, but then z /∈ C \ R<0. Thus the set is not open
in C. It is not closed in C because the complement R<0 is clearly not open; to see this simply pick any point
x ∈ R<0 (so x < 0) and note that any ball Bϵ(x) must contain the point z = x+ iϵ/2, which is not in R<0.

Q.9 Let (X, d) be a metric space. Show that X is “Hausdorff”; that is, for any pair of distinct points x and y
in X there exist open sets U and V such that x is in U , y is in V , and U ∩ V = ∅. (So in metric spaces we
can separate points by open sets.)

S.9 Let x ̸= y be two points in X and let r = d(x, y) > 0 be the distance between them. Then Br/2(x) and
Br/2(y) are open (by Lemma 2.6), are disjoint, and containing x and y respectively. To see they are disjoint,
assume z ∈ Br/2(x) ∩Br/2(y); then d(x, y) ≤ d(x, z) + d(z, y) < r/2 + r/2 = r, which is impossible.

Q.10 Let A be a subset of a metric space X . As in lectures, we define the interior A0 of A by

A0 := {x ∈ A : there exists an open set U ⊆ A such that x ∈ U}.
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(i) Clearly the interior A0 is open. Show that it is the largest open subset of A; precisely, show that if U
is open and U ⊆ A then U ⊆ A0. Deduce that A0 is the union of all open subsets of A; that is,

A0 =
⋃
U⊆A
U open

U.

(ii) Show that for any two subsets A,B ⊆ X we have A0 ∪ B0 ⊆ (A ∪ B)0. Write down the interior of
the interval [2, 3) in R. Hence or otherwise, give an example of two subsets of R for which we have
A0 ∪B0 ̸= (A ∪B)0.

S.10 (i) If U is an open subset of A then for every x ∈ U there exists a ball Bϵ(x) ⊆ U ⊆ A. But this means
x ∈ A0 and so U ⊆ A0. [Note, we didn’t actually need to use the ball, since U itself is an open set in A
containing x - it was good practice however.]

Since every open subset of A is a subset of A0, the union of all open subsets (which is open according to a
lemma from class) must be a subset of A0. So,⋃

U⊆A
U open

U ⊆ A0.

On the other hand, A0 is itself an open subset of A. Thus

A0 ⊆
⋃
U⊆A
U open

U.

(ii) Suppose x ∈ A0 ∪ B0. Then either x ∈ A0 or x ∈ B0. In the first case there exists ϵ > 0 such that
Bϵ(x) ⊆ A; in the second case there exists ϵ > 0 such that Bϵ(x) ⊆ B. In both cases Bϵ(x) ⊆ A ∪ B,
which shows that x ∈ (A ∪ B)0 [Note, we chose a ball Bϵ(x) as our open set since if U ⊆ A is open
and x ∈ U we can always find ϵ > 0 such that Bϵ(x) ⊆ U ⊆ A. We could have used the U given in the
definition, though].

The interior of (2, 3) is clearly (2, 3), since it is open. The interior of [2, 3) is clearly (2, 3); either note that
every open ball centred at x = 2 (and so every open set containing the point x = 2) must contain a point not
in [2, 3), or simply note that it is clearly the largest open subset of [2, 3).

For an example of two intervals for which A0 ∪B0 ̸= (A∪B)0, you could take B = [2, 3) and A = (1, 2).
Then, (1, 2) ∪ (2, 3) = A0 ∪B0 ̸= (A ∪B)0 = (1, 3).

Q.11 Let A be a subset of a metric space X . We define the closure A of A by

A = {x ∈ X : U ∩A ̸= ∅ for all open sets U containing x}.

(i) Show that A = {x ∈ X : infz∈A d(x, z) = 0}.

(ii) Show directly from the definition that A is closed.

S.11 (i): For the asserted equality, let x ∈ A. Then for all ϵ > 0, there exists a point z in the intersection Bϵ(x)∩A
(by definition of A). So d(x, z) < ϵ. Since z ∈ A, this means infz∈A d(x, z) < ϵ. Since ϵ was arbitrary,
the infinum must be zero. Conversely, let x be a point in X such that infz∈A d(x, z) = 0. Consider an open
set U containing x. We need to show U ∩ A ̸= ∅. Now U contains a small ball Bϵ(x). If Bϵ(x) ∩ A was
empty then for all points z ∈ A we would have d(x, z) ≥ ϵ, in contradiction to the assumption that the
infimum was zero.

(ii): The simplest way to show this is to use the definition A =
(
(Ac)0

)c
together with the fact that B0 is

an open set for any set B.
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Q.12 Consider R together with the usual metric coming from the absolute value. Show:
(i) The set {x}, where x ∈ R is given, is not open.
(ii) All open intervals are open, all closed intervals are closed.
(iii) Infinite intersections of open sets are not necessarily open.
(iv) The interval (0, 1] is neither open nor closed. What is its closure?

S.12 (i) The open ball Bϵ(x) in R is simply the open interval (x− ϵ, x+ ϵ). Clearly, for every ϵ > 0 this interval
is not contained in {x}, so the set cannot be open.
(ii) Note that we must consider both finite and infinite intervals. We could prove openness “by hand” in every
case, but here some “high tech” reasons: Note that an arbitrary finite interval (a, b) is equal to the open ball
B(b−a)/2((a+ b)/2) and is therefore open by Lemma 2.6. The infinite intervals (−∞, b) =

⋃
n(−n, b) and

(a,∞) =
⋃

n(a, n) are then open since they are the union of open sets (by a result from class).
The complement of the closed interval [a, b] is (b,∞) ∪ (−∞, a) which is open (since it is the union of two
open sets). Thus [a, b] is closed. A similar argument then works for [b,∞) and (−∞, a].
(iii) There are many counter-examples. For example,

⋂∞
n=1(−

1
n ,

1
n) = {0}. The intervals here are open (by

part (ii)), but the set {0} is closed.
(iv) For non-openess consider the point 1; any interval of the form (1−ϵ, 1+ϵ) must contain the point 1+ϵ/2,
which is not in (0, 1]. For non-closedness, consider the point 0 in the complement (−∞, 0] ∪ (1,∞); by a
similar argument this complement is not open. The closure of (0, 1] is [0, 1] since it is the smallest closed
set containing (0, 1].

Q.13 Give an example of a metric space X and an x ∈ X such that B1(x) ̸= B1(x); that is, the closure of the
open ball is not necessarily the closed ball!!

S.13 There is more than one answer, but one could for example take the subset X ⊆ R given by X = {0, 1},
with its usual discrete metric. Let x = 0. We know from lectures that all subsets of a discrete metric space
are clopen (in particular they are closed) and so {0} = {0}. Thus,

B1(x) = X = {0, 1} ≠ {0} = {0} = B1(x).

Q.14 Let A be a subset of a metric space X . Show that We may define the boundary ∂A of A by

(i) ∂A = {x ∈ X : for all open sets U containing x, there exist y, z ∈ U with y ∈ A and z ∈ Ac}.
(ii) a set A is open if and only if ∂A ∩A = ∅;

(iii) A is closed if and only if ∂A ⊆ A.

S.14 (i) Assume that x ∈ ∂A =
(
A0

)c ∩ (
(Ac)0

)c
and let U be an open set containing x. Since U is open we

can find ϵ > 0 such that Bϵ(x) ⊆ U . We claim that Bϵ(x) ∩ A ̸= ∅. Indeed, if the intersection is empty
then Bϵ(x) ⊆ Ac which shows that x is an interior point of Ac, i.e. x ∈ (Ac)0. However, as x ∈ ∂A this

contradicts the fact that x ∈
(
(Ac)0

)c
. We conclude that there exists y ∈ Bϵ(x) ∩ A ⊆ U ∩ A. Replacing

A with Ac and using the fact that ∂A = ∂Ac by definition gives us that Bϵ(x)∩Ac ̸= ∅ from which we find
z ∈ U ∩Ac.
Conversely, assume that x ∈ X is such that for any open U such that x ∈ U we have U ∩ A ̸= ∅ and
U ∩Ac ̸= ∅. We claim that x /∈ A0. Indeed, if there exists ϵ > 0 such that Bϵ(x) ⊆ A then Bϵ(x)∩Ac = ∅
which is a contradiction to our assumption (Bϵ(x) is an open set!). We conclude that x ∈

(
A0

)c. Replacing

A with Ac gives us that x ∈
(
(Ac)0

)c
and as such

x ∈
(
A0

)c ∩ (
(Ac)0

)c
= ∂A.

(ii) Assume A is open and let x be a point in A. Then there exists an open ball Bϵ(x) in A. But Bϵ(x) is an
open set containing x that does not contain any point of Ac, so x is not a boundary point. Conversely, if A
does not contain any boundary points then for every x ∈ A there exists an open set U containing x which
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does not contain any points from Ac; thus U ⊆ A. Since U is open there is an open ball Bϵ(x) ⊆ U ⊆ A
and so A is open.

(iiI) Just note that ∂A = ∂(Ac) and use part (iI): The set A is closed ⇐⇒ Ac is open ⇐⇒ ∂(Ac)∩(Ac) =
∅ ⇐⇒ ∂A ∩ (Ac) = ∅ ⇐⇒ ∂A ⊆ A.

Q.15 Show that if a sequence {xn} converges in a discrete metric space, then it is eventually constant.

S.15 A sequence {xn} converges to a point x0 with respect to the discrete metric d0(x, y) :=

{
0 if x = y,

1 if x ̸= y,

if for any ϵ > 0 there exists N ∈ N such that for every n > N we have d0(xn, x0) < ϵ.

Assuming that xn → x0, we notice that for this metric d0(x, y) < 1 ⇐⇒ x = y. Thus, we may simply
take ϵ = 1, say, so that there exists N ∈ N with d0(xn, x0) < 1 for all n > N . Then, for every n > N we
have xn = x0; in other words the sequence is eventually constant.


