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1 Using the related property for open sets, or otherwise, show that a map f : X → Y of two metric spaces is
continuous if and only if f−1(F ) is closed for all closed sets F in Y .

2 Show that a map f : X → Y between two metric spaces is continuous at x0 ∈ X if and only if

lim
n→∞

f(xn) = f(x0) for every convergent sequence {xn}n∈N in X with xn → x0.

[Hint for ‘⇐’ direction: try a contrapositive argument. In particular, show that if ∃ ϵ > 0 s.t. ∀δ > 0
∃x ∈ Bδ(x0) with f(x) /∈ Bϵ(f(x0)), then you can construct a sequence xn → x0 with f(xn) ̸→ f(x0).]

3 Show that U := {(x, y) ∈ R2 : y − 2x2 > 0, y/x > 2} is open in R2. [Hint: Use the properties of
continuous functions. But be careful: e.g., y/x is not continuous on R2 since it is not everywhere defined!]

4 (i) Show that U := {(x, y) ∈ R2 : (xy2 sin(xy) > 3) or (exy−2 + log(x2 + 1) < 3y)} is open in R2.

(ii) Show that U := {(x, y) ∈ R2 : xy3/(xy − 1) > 2} is open in R2.

5 Suppose that X and Y are metric spaces with metrics dX and dY and define a function

d : (X × Y )× (X × Y ) → [0,∞)

by d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′). Check that d defines a metric on X × Y . Show that the map

π : X × Y → X given by π(x, y) = x is continuous (with respect to the metrics d and dX ).

6 We call a map f : (X, d1) → (Y, d2) between two metric spaces Lipschitz if there exists a positive constant
C such that

d2(f(x1), f(x2)) ≤ Cd1(x1, x2)

for all x1, x2 ∈ X . Show that if f is Lipschitz then f is continuous.

7 Let A ⊆ X be a non-empty subset of a metric space X . We define the distance of a point x ∈ X to A by

d(x,A) := inf
z∈A

d(x, z).

Show that the function f : X → R : x 7→ d(x,A) is Lipschitz and hence continuous. [Hint: Consider, for
arbitrary z ∈ A and x, y ∈ X , the inequality d(x, z) ≤ d(x, y)+ d(y, z) and take the infimum over z ∈ A.]

8 Consider the map f : (−π, π] → {z ∈ C : |z| = 1} given by f(t) = eit. Note that f is a bijection.

(i) Show that f is continuous by using the ϵ-δ definition. (You may use the known facts that sin and cos
are continuous on R.)

(ii) Prove separately that f is continuous at t = π by showing that the preimage f−1(Uϵ) is open, where
Uϵ = {eit : t ∈ (π − ϵ, π + ϵ)} for some ϵ > 0
[Note that due to the fact that f is 2π periodic Uϵ = {eit : t ∈ (π − ϵ, π] ∪ (−π,−π + ϵ)}].

(iii) However, show that the inverse map g = f−1 (the logarithm!) is not continuous on {z ∈ C : |z| = 1}
by finding an open set V in (−π, π] such that g−1(V ) is not open. [Compare this with Q9 below.]

9 Let f : X → Y be a bijective continuous map of metric spaces and let X be compact. Show that the inverse
map f−1 : Y → X is continuous. [Hint: Use Q1 and the results from lectures concerning compactness.]

10 Notice that any complex number can be represented as z = reiθ for r ∈ R and θ ∈ (−π, π]. Define a map
f : C → R by f(reiθ) = r/(π + θ), for r ∈ R and θ ∈ (−π, π]. Show f is not continuous at π, but
f |L : L → R is continuous for all straight lines L through the origin.
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11 Discrete Sets
Let X be any metric space. We call a subset A ⊆ X discrete if for every point x ∈ A there is an open set U
containing x that does not intersect any other point of A (in other words, U ∩A = {x}).

(i) Show that Z is discrete inside R.
(ii) Show that { 1

n : n ∈ Z, n ̸= 0} is discrete in R, but { 1
n : n ∈ Z, n ̸= 0} ∪ {0} is not.

(iii) Let A be a closed discrete set inside a compact set K. Show that A is finite.
[Hint: assume for a contradiction that A is infinite.]

(iv) Use part (ii) to explain that one needs the “closed” hypothesis in part (iii).
(v) Show that every subset of a discrete metric space is discrete (hence the name).

12 Connected Sets
We call a metric space X connected if the only subsets which are simultaneously open and closed (that is
“clopen”) are X and the empty set ∅. [Note that this is the opposite situation to a discrete metric space,
where every subset is clopen.]

(i) Let X be the union of the intervals [0, 1) and [2, 3] together with the metric restricted from the standard
metric on Rn. Show that X is not connected. [Note, this explains the terminology.]

(ii) Show that Rn is connected (so no proper subset of Rn is simultaneously open and closed).
[Hint: Assume not, so by definition we could write Rn = U ∪ V with U and V both open and non-
empty, say x ∈ U, y ∈ V . Consider the line segment ℓ(t) := x + t(y − x) with t ∈ [0, 1] from x to y
and the “crossing point” from U to V . ]

13 Matrices as metric spaces
We endow Mn(R), the set of n × n real matrices, with the norm arising from viewing Mn(R) as Rn2

; so
∥A∥ =

√∑
i,j |xij |2 for any matrix A with entries xij ∈ R.

(i) Explain why the determinant is continuous as a map from Mn(R) to R.
(ii) Show that GLn(R) is open in Mn(R).

(iii) Show that SLn(R) is closed in Mn(R), but not compact.
(iv) Recall that O(n), the orthogonal group, consists of column vectors which give a orthonormal basis

for Rn. Use Heine-Borel to show that O(n) is compact.
[Hint: To show that O(n) is closed, find (finitely many) continuous functions fi : O(n) → R and
closed sets Ki ⊂ R such that O(n) =

⋂
i f

−1
i (Ki).]

14 A different definition of compactness

(i) Show that x being a limit point of a subsequence of a sequence {xn}n∈N in a metric space X is the
same thing as Br(x) containing infinitely many terms xn of the sequence for any choice of r > 0.

(ii) We call a metric space X compact if whenever {Ui : i ∈ I} is a collection of open subsets Ui ⊆ X
with X =

⋃
i∈I Ui, then there exists a finite subset J ⊆ I with X =

⋃
i∈J Ui. [We say “Any open

cover admits a finite subcover”.] Show that if X is compact then X is compact.
(iii) Suppose X is compact. Show that given ϵ > 0 there exists a finite set of points x1, x2, . . . , xr ∈ X

such that X =
⋃r

i=1Bϵ(xi). [This set of points is called a “finite ϵ-net”.]
(iv) Suppose X is compact and {Ui : i ∈ I} is a collection of open subsets Ui ⊆ X with X =

⋃
i∈I Ui.

Show that there exists ϵ > 0 such that for any point x ∈ X there exists i ∈ I with Bϵ(x) ⊆ Ui.
[Such an ϵ is called a “Lebesgue number” for the cover {Ui : i ∈ I}.]

(v) Hence, show that if X is compact then X is compact.

Remark: As mentioned in lectures, our notion of a set being compact is more commonly referred to as the
set being “sequentially compact”. As shown, these two notions coincide for subsets of metric spaces, but
they do not in general.


