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Q.1 Using the related property for open sets, or otherwise, show that a map f : X → Y of two metric spaces is
continuous if and only if f−1(F ) is closed for all closed sets F in Y .

S.1 If F is closed, then its complement F c is open. Moreover, every open set U ⊆ Y can be written as U =
(U c)c i.e. as the complement of a closed set (since U c is closed by definition). Hence, by a theorem from
class, a function f is continuous iff f−1(F c) is open for every closed set F . However, the set f−1(F c) =(
f−1(F )

)c
= X \ f−1(F ) being open is equivalent to its complement f−1(F ) being closed.

Q.2 Show that a map f : X → Y between two metric spaces is continuous at x0 ∈ X if and only if

lim
n→∞

f(xn) = f(x0) for every convergent sequence {xn}n∈N in X with xn → x0.

[Hint for ‘⇐’ direction: try a contrapositive argument. In particular, show that if ∃ ϵ > 0 s.t. ∀δ > 0
∃x ∈ Bδ(x0) with f(x) /∈ Bϵ(f(x0)), then you can construct a sequence xn → x0 with f(xn) ̸→ f(x0).]

S.2 Let d be the metric associated with Y .

⇒: Let ϵ > 0, assume xn → x0, and consider the ball Bϵ(f(x0)). By continuity there exists δ > 0 such
that if x ∈ Bδ(x0) then f(x) ∈ Bϵ(f(x0)). However, since xn → x0 there exists n ∈ N such that
xn ∈ Bδ(x0) for any n > N . Thus, for every n > N we have f(xn) ∈ Bϵ(f(x0)); in other words,
there exists n ∈ N such that for every n > N we have d(f(xn), f(x0)) < ϵ, as required.

⇐: We use a contrapositive argument: we show that if f is not continuous then it does not satisfy the
displayed property concerning convergent sequences. So, assume f is not continuous at x0 ∈ X; that
means there exists ϵ > 0 such that for every δ > 0 there is x ∈ Bδ(x0) with f(x) /∈ Bϵ(f(x0)).
[This is just the negation of the definition of continuity.] Choose the ϵ for which this holds. Then,
in particular, for every n ∈ N there exists xn ∈ B1/n(x0) with f(xn) /∈ Bϵ(f(x0)). The sequence
{xn}n∈N clearly converges to x, yet for every n ∈ N we have d(f(xn), f(x0)) ≥ ϵ, so {f(xn)}n∈N
cannot converge to f(x0).

Q.3 Show that U := {(x, y) ∈ R2 : y − 2x2 > 0, y/x > 2} is open in R2. [Hint: Use the properties of
continuous functions. But be careful: e.g., y/x is not continuous on R2 since it is not everywhere defined!]

S.3 Since y/x is not continuous everywhere we cannot use it directly with our theorem relating continuous
functions to open sets. Instead notice that

U = {(x, y) ∈ R2 : y − 2x2 > 0, x > 0, y − 2x > 0}

Indeed, we have that{
(x, y) ∈ R2 : y/x > 2

}
=

{
(x, y) ∈ R2 : x > 0, y > 2x

}
∪
{
(x, y) ∈ R2 : x < 0, y < 2x

}
and since y− 2x2 > 0 implies y > 0 we see that it is impossible to satisfy y− 2x2 > 0 and x < 0, y < 2x.
Letting f(x, y) = y − 2x2, g(x, y) = x and h(x, y) = y − 2x (which are all continous), we have
U = f−1((0,∞)) ∩ g−1((0,∞)) ∩ h−1((0,∞)). Since (0,∞) is open in R, it follows from a theorem from
class that all of these preimages are open. U is therefore open since finite intersections of open sets are open.

Q.4 (i) Show that U := {(x, y) ∈ R2 : (xy2 sin(xy) > 3) or (exy−2 + log(x2 + 1) < 3y)} is open in R2.

(ii) Show that U := {(x, y) ∈ R2 : xy3/(xy − 1) > 2} is open in R2.

S.4 (i) We have U = f−1((3,∞)) ∪ g−1((−∞, 0)), where

f(x, y) = xy2 sin(xy) and g(x, y) = exy−2 + log(x2 + 1)− 3y

are continuous functions (they are sums/products/compositions of continuous functions). By Theorem 2.17
each of the above preimages is open, and so U , as a union of open sets, is itself open.
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(ii) As in Q4, we must be careful because the function concerned is not continuous on R2 (since it is not
defined when xy = 1). To solve this we multiply through by xy−1 and rearrange - but more care is needed;
if xy − 1 is negative, this act will reverse the inequality. Thus,

U = {(x, y) : xy − 1 > 0, xy3 > 2(xy − 1)} ∪ {(x, y) : xy − 1 < 0, xy3 < 2(xy − 1)}

Hence
U =

(
f−1((0,∞)) ∩ g−1((0,∞))

)
∪

(
f−1((−∞, 0)) ∩ g−1((−∞, 0))

)
where f(x, y) = xy−1 and g(x, y) = xy3−2(xy−1) are continuous. This is open since finite intersections
and arbitrary unions of open sets are open.

Q.5 Suppose that X and Y are metric spaces with metrics dX and dY and define a function

d : (X × Y )× (X × Y ) → [0,∞)

by d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′). Check that d defines a metric on X × Y . Show that the map

π : X × Y → X given by π(x, y) = x is continuous (with respect to the metrics d and dX ).

S.5 It is clear that d((x, y), (x′, y′)) is non-negative and only 0 when x = x′ and y = y′; that is, when (x, y) =
(x′, y′). So, property (D1) holds. Also the symmetry property of d follows from the symmetry properties
(D2) of dX and dY . All that remains is to check the triangle inequality (D3). Let x, x′, x′′ ∈ X and
y, y′, y′′ ∈ Y . Then

d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′)

≤ dX(x, x′′) + dX(x′′, x′) + dY (y, y
′′) + dY (y

′′, y′)

= d((x, y), (x′′, y′′)) + d((x′′, y′′), (x′, y′)).

We now prove continuity. Let (x, y) ∈ X × Y and let ϵ > 0. Then for every (x′, y′) ∈ X × Y such that
d((x, y), (x′, y′)) < ϵ we have

ϵ > d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′)

(D1)

≥ dX(x, x′) = dX(π((x, y)), π((x′, y′))).

Hence, taking δ = ϵ is sufficient to establish continuity at (x, y).

Q.6 We call a map f : (X, d1) → (Y, d2) between two metric spaces Lipschitz if there exists a positive constant
C such that

d2(f(x1), f(x2)) ≤ Cd1(x1, x2)

for all x1, x2 ∈ X . Show that if f is Lipschitz then f is continuous.

S.6 Let ϵ > 0. We will show f is continous at x1 ∈ X . To do this we need to find δ > 0 such that for every
x2 ∈ X with d1(x1, x2) < δ we have d2(f(x1), f(x2)) < ϵ.

We may simply take δ = ϵ/C. Indeed, by the definition of Lipschitz, for any x2 ∈ X with d1(x1, x2) <
δ = ϵ/C we have

d2(f(x1), f(x2)) ≤ Cd1(x1, x2) < Cϵ/C = ϵ,

and so f is continous.

Q.7 Let A ⊆ X be a non-empty subset of a metric space X . We define the distance of a point x ∈ X to A by

d(x,A) := inf
z∈A

d(x, z).

Show that the function f : X → R : x 7→ d(x,A) is Lipschitz and hence continuous. [Hint: Consider, for
arbitrary z ∈ A and x, y ∈ X , the inequality d(x, z) ≤ d(x, y)+d(y, z) and take the infimum over z ∈ A.]
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S.7 We will show |f(x) − f(y)| ≤ d(x, y) and so Lipschitz with constant C = 1. For arbitrary z ∈ A and
x, y ∈ X we have d(x, z) ≤ d(x, y) + d(y, z) by property (D3). Now take the infimum over z ∈ A, and we
obtain

f(x) ≤ d(x, y) + f(y).

Thus f(x) − f(y) ≤ d(x, y). By swapping the roles of x and y and repeating the procedure we also have
f(y)− f(x) ≤ d(x, y), and the claim follows.

Q.8 Consider the map f : (−π, π] → {z ∈ C : |z| = 1} given by f(t) = eit. Note that f is a bijection.

(i) Show that f is continuous by using the ϵ-δ definition. (You may use the known facts that sin and cos
are continuous on R.)

(ii) Prove separately that f is continuous at t = π by showing that the preimage f−1(Uϵ) is open, where
Uϵ = {eit : t ∈ (π − ϵ, π + ϵ)} for some ϵ > 0
[Note that due to the fact that f is 2π periodic Uϵ = {eit : t ∈ (π − ϵ, π] ∪ (−π,−π + ϵ)}].

(iii) However, show that the inverse map g = f−1 (the logarithm!) is not continuous on {z ∈ C : |z| = 1}
by finding an open set V in (−π, π] such that g−1(V ) is not open. [Compare this with Q9 below.]

S.8 (i) Fix t0 ∈ (−π, π] and let ϵ > 0. To show f is continous at t0 we need to find δ > 0 such that for every
t ∈ (−π, π] satisfying |t− t0| < δ in R we have |f(t)− f(t0)| < ϵ in C. Well,

|f(t)− f(t0)| = |eit − eit0 | = |(cos(t)− cos(t0)) + i(sin(t)− sin(t0))|.

Now, note that both cos and sin are continuous functions on (−π, π] so, in particular, there exist δc > 0
and δs > 0 such that for all t ∈ (−π, π]

|t− t0| < δc ⇒ | cos(t)− cos(t0)| < ϵ/
√
2 and |t− t0| < δs ⇒ | sin(t)− sin(t0)| < ϵ/

√
2.

Now take δ = min(δc, δs). Then, for every t ∈ (−π, π] with |t− t0| < δ we have

|f(t)− f(t0)| =
√
(cos(t)− cos(t0))2 + (sin(t)− sin(t0))2 <

√(
ϵ√
2

)2

+

(
ϵ√
2

)2

= ϵ,

as required.

(ii) First notice that as subsets of the metric space (−π, π] the intervals (π − ϵ, π] and (−π,−π + ϵ)
are both open in (−π, π] with respect to the restricted metric. Following the remark f−1(Uϵ) =
(π − ϵ, π] ∪ (−π,−π + ϵ), which, as the union of two open sets, must also be open.

(iii) For example, set Vϵ := (π − ϵ, π], which is open in (−π, π]. Then g−1(Vϵ) = f(Vϵ) = {eit : t ∈
(π − ϵ, π]}, which is not open in {z ∈ C : |z| = 1}.

Q.9 Let f : X → Y be a bijective continuous map of metric spaces and let X be compact. Show that the inverse
map f−1 : Y → X is continuous. [Hint: Use Q1 and the results from lectures concerning compactness.]

S.9 We start by noticing that for invertible function the pre-image of a set U is the image of the inverse function
of the same set (by definition).
By Q1, we need to show that (f−1)−1(F ) = f(F ) is closed in Y for every closed set F in X . From class
we know that any closed subset of a compact set is compact, so every such F must also be compact. By
another theorem from class we know that the image of any compact set under a continuous map is compact.
Thus, f(F ) is compact; in particular f(F ) is indeed closed.

Q.10 Notice that any complex number can be represented as z = reiθ for r ∈ R and θ ∈ (−π, π]. Define a map
f : C → R by f(reiθ) = r/(π + θ), for r ∈ R and θ ∈ (−π, π]. Show f is not continuous at π, but
f |L : L → R is continuous for all straight lines L through the origin.
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S.10 We will solve this problem by using the sequential criterion of continuity (see Q2). We start by noticing that
any line L passing through the origin is the union the origin with two rays

L1,θ0 =
{
z ∈ C : z = reiθ0 , r > 0

}
, L2,θ =

{
z ∈ C : z = rei(π−θ0), r > 0

}
,

where θ0 is a fixed angle. This means that any sequence {zn}n∈N on L is represented by a sequence {rn}n∈N
in R≥0 and a sequence {θn}n∈N which can attain two possible values: θ0 or π− θ0. Since rn = |zn| we see
that if {zn}n∈N converges to z then {rn}n∈N must converge to |z|. Next we notice that if z ̸= 0 then since
B |z|

2

(z) must contain all but finitely many {zn}−s and is separated from the origin, θn must be either θ0 or

π − θ0 for all but finitely many {zn}−s. Without loss of generality, let us assume that it is θ0, and notice
that this is exactly Arg (z). We conclude that for all but finitely many n−s

f(zn) =
rn

π + θn
=

rn
π + θ0

−→
n→∞

|z|
π + θ0

= f
(
|z|eiθ0

)
= f(z).

When z = 0 we find that ∣∣∣∣ 1

π + θn

∣∣∣∣ ≤ max

{
1

π + θ0
,

1

2π − θ0

}
and as such

0 ≤ |f (zn)| ≤ max

{
1

π + θ0
,

1

2π − θ0

}
rn

As the right hand side goes to zero we can use the pinching lemma to conclude that

lim
n→∞

f (zn) = 0 = f(0)

and conclude the continuity on lines.
To show the lack of continuity at π we consider the sequence zn = ei(−π+ 1

n). We have that zn −→
n→∞

e−iπ =

eiπ and as such
f
(
lim
n→∞

zn

)
= f

(
eiπ

)
=

1

2π
.

On the other hand
f (zn) =

1

π +
(
−π + 1

n

) = n −→
n→∞

∞.

Q.11 Discrete Sets
Let X be any metric space. We call a subset A ⊆ X discrete if for every point x ∈ A there is an open set U
containing x that does not intersect any other point of A (in other words, U ∩A = {x}).

(i) Show that Z is discrete inside R.

(ii) Show that { 1
n : n ∈ Z, n ̸= 0} is discrete in R, but { 1

n : n ∈ Z, n ̸= 0} ∪ {0} is not.

(iii) Let A be a closed discrete set inside a compact set K. Show that A is finite.
[Hint: assume for a contradiction that A is infinite.]

(iv) Use part (ii) to explain that one needs the “closed” hypothesis in part (iii).

(v) Show that every subset of a discrete metric space is discrete (hence the name).

S.11 (i) For each n ∈ Z, simply consider the ball B1/2(n) of radius 1/2 around n. This does not intersect any
other integers.

(ii) We must be a little careful. When n = ±1 the ball B1/2(1/n) does not intersect any other point in the
set { 1

n : n ∈ Z, n ̸= 0}. For n ̸= ±1 the difference between any two consecutive members of the set
is

1

n
− 1

n+ 1
=

n+ 1

n(n+ 1)
− n

n(n+ 1)
=

1

n(n+ 1)
,
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and similarly, 1
n−1−

1
n = 1

n(n−1) . Thus, we may take, for any fixed n ∈ Z\{0}, ϵn = min
(

1
n(n+1) ,

1
n(n−1)

)
>

0; which of the two quantities is the smallest depends on whether n is positive or negative. Then
Bϵn(1/n) does not intersect any other point in the set.
On the other hand, for the second set any ball Br(0) around 0 will intersect { 1

n} for some n, so the set
is not discrete.

(iii) Assume A was infinite and let {xn} be an infinite sequence of different points in A. Since A is closed
and inside a compact set, it is itself compact (by a result from class). Hence there exists a convergent
subsequence with limit x ∈ A (which is different from all but possibly one element in the sequence).
But this is impossible, since this means that any ball around x must contain infinitely many elements
of the sequence, contradicting the discreteness of A.

(iv) The set { 1
n : n ∈ Z, n ̸= 0} is discrete in the compact interval [−1, 1], but is infinite. On the other

hand, { 1
n : n ∈ Z, n ̸= 0} is not closed; there is no open ball centred at the origin and entirely

contained in the complement of the set.

(v) Let Y be a subset of a discrete metric space X with metric d(x, y) :=

{
0 if x = y.

1 if x ̸= y.
Simply

take ϵ = 1/2. Then for every point y ∈ Y we have Bϵ(y) = {y}, and (since open balls are open sets)
Y is discrete. [Note, the empty set ∅ is trivially discrete.]

Q.12 Connected Sets
We call a metric space X connected if the only subsets which are simultaneously open and closed (that is
“clopen”) are X and the empty set ∅. [Note that this is the opposite situation to a discrete metric space,
where every subset is clopen.]

(i) Let X be the union of the intervals [0, 1) and [2, 3] together with the metric restricted from the standard
metric on Rn. Show that X is not connected. [Note, this explains the terminology.]

(ii) Show that Rn is connected (so no proper subset of Rn is simultaneously open and closed).
[Hint: Assume not, so by definition we could write Rn = U ∪ V with U and V both open and non-
empty, say x ∈ U, y ∈ V . Consider the line segment ℓ(t) := x + t(y − x) with t ∈ [0, 1] from x to y
and the “crossing point” from U to V . ]

S.12 (i) We have that in X the open ball B1(1/2) = {x ∈ X : |x− 1/2| < 1} of radius 1 around 1/2 is equal
to [0, 1)! Hence [0, 1) is an open set in X (but of course not in R). Similarly B1(5/2) = [2, 3], so the
latter interval is also open in X! Since each of [0, 1) and [2, 3] are complements of each other in X ,
they are also both closed. Thus, we have two clopen subsets not equal to X or ∅.

(ii) For a contradiction, assume that U is a proper clopen subset of Rn (so that U is not Rn or ∅). Then its
complement V := Rn \U is also clopen (since it is the complement of an open set and the complement
of a closed set). In particular we have that Rn = U ∪ V is the disjoint union of two non-empty open
sets.
With the notation from the hint, we let s := sup(t ∈ [0, 1] : ℓ(t) ∈ U) determine the “crossing point”
z := ℓ(s), where the line leaves U and enters V . Since ℓ(0) = x ∈ U , this number is well defined.
If z ∈ U , then there must exists a ball Bϵ(z) around z that lies inside U , since U is open. But this is
impossible, since by construction ℓ(t) lies in V for t ∈ (s, s + ϵ). If z ∈ V we argue similarly; there
must exists a ball Bϵ(z) around z lying inside V , since V is open, which is also impossible since ℓ(t)
for t ∈ (s− ϵ, s) lies in U .
[Note, essentially we prove “path-connected” implies “connected”.]

Q.13 Matrices as metric spaces
We endow Mn(R), the set of n × n real matrices, with the norm arising from viewing Mn(R) as Rn2

; so
∥A∥ =

√∑
i,j |xij |2 for any matrix A with entries xij ∈ R.

(i) Explain why the determinant is continuous as a map from Mn(R) to R.
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(ii) Show that GLn(R) is open in Mn(R).
(iii) Show that SLn(R) is closed in Mn(R), but not compact.

(iv) Recall that O(n), the orthogonal group, consists of column vectors which give a orthonormal basis
for Rn. Use Heine-Borel to show that O(n) is compact.
[Hint: To show that O(n) is closed, find (finitely many) continuous functions fi : O(n) → R and
closed sets Ki ⊂ R such that O(n) =

⋂
i f

−1
i (Ki).]

S.13 (i) Notice that the determinant is a polynomial map in the entries of the matrix. [To be precise,

det(A) =
∑
σ

sgn(σ)
n∏

i=1

xσ(i),i where the sum is over all permutations σ.]

Thus the determinant is continuous. [Alternatively, note that for a 1 × 1 matrix the determinant is
just the identity map and is therefore trivially continuous. Then the determinant of an n × n matrix
is just a sum/product of projection maps and the determinants of the minors (which are continuous by
induction).]

(ii) GLn(R) is the preimage of the union of open sets (−∞, 0)∪ (0,∞) in R under the determinant. Since
this union of open sets is an open set, the set GLn(R) is open.

(iii) SLn(R) is the preimage of {1} ∈ R under the determinant and since {1} is closed in R and the
determinant is continuous we conclude that SLn (R) is closed. To be compact, SLn(R) also needs to
be bounded. But, for example, the diagonal matrices of the form diag(t, t−1, 1, · · · , 1) with t ∈ R ̸=0

are contained in SLn(R), but are not bounded; for any potential bound R we can find t such that

∥diag(t, t−1, 1, · · · , 1)∥ =
√
t2 + (1/t)2 + (n− 2)(1)2

is greater than R.

(iv) We show the set is closed and bounded (where we use the view of Mn (R) as Rn2
and apply Heine-

Borel). An orthonormal basis consists of (pairwise orthogonal) vectors {x1, . . . ,xn} with ∥xi∥n = 1.
Hence, the norm of any matrix X = (x1, · · · ,xn) in O(n) is given by ∥X∥ =

√
n. Thus, O(n) is

bounded.
For closedness, we want to write O(n) as the preimage of a closed set under a continuous function -
there is no obvious way to write O(n) as a preimage under the determinant, so lets think of another
continuous map. Define the maps fij : Mn(R) → R on the set Mn(R) by fij(X) = xi

T · xj , where
xi and xj denote the i-th and j-th column vectors of X respectively. Note that these finitely many
maps are all continuous (since they are just polynomials in the matrix entries). Then

O(n) =
⋂
i ̸=j

f−1
ij ({0}) ∩

⋂
i

f−1
ii ({1}).

Each of the preimages f−1
ij ({0}) and f−1

ii ({1}) is closed by Theorem 2.17. Thus, the set O(n) is the
finite intersection of closed sets, thus closed.

Q.14 A different definition of compactness

(i) Show that x being a limit point of a subsequence of a sequence {xn}n∈N in a metric space X is the
same thing as Br(x) containing infinitely many terms xn of the sequence for any choice of r > 0.

(ii) We call a metric space X compact if whenever {Ui : i ∈ I} is a collection of open subsets Ui ⊆ X
with X =

⋃
i∈I Ui, then there exists a finite subset J ⊆ I with X =

⋃
i∈J Ui. [We say “Any open

cover admits a finite subcover”.] Show that if X is compact then X is compact.

(iii) Suppose X is compact. Show that given ϵ > 0 there exists a finite set of points x1, x2, . . . , xr ∈ X
such that X =

⋃r
i=1Bϵ(xi). [This set of points is called a “finite ϵ-net”.]
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(iv) Suppose X is compact and {Ui : i ∈ I} is a collection of open subsets Ui ⊆ X with X =
⋃

i∈I Ui.
Show that there exists ϵ > 0 such that for any point x ∈ X there exists i ∈ I with Bϵ(x) ⊆ Ui.
[Such an ϵ is called a “Lebesgue number” for the cover {Ui : i ∈ I}.]

(v) Hence, show that if X is compact then X is compact.

Remark: As mentioned in lectures, our notion of a set being compact is more commonly referred to as the
set being “sequentially compact”. As shown, these two notions coincide for subsets of metric spaces, but
they do not in general.

S.14 (i) If xni is a subsequence with a limit point x, and let r > 0. Then by the definition of convergence, all
points xni are in Br(x) for all large enough values of i. Conversely, suppose Br(x) contains infinitely
many terms of the sequence xn for any choice of r. Let xn1 be a member of the sequence in B1(x).
Then, for i > 1, let xni be any member of the sequence in B1/i(x) with ni > ni−1. It is then
straightforward to see that xni converges to x.

(ii) Suppose X is compact, and let xn be a sequence of points in X . Suppose for a contradiction that there
is no convergent subsequence of xn with limit point in X . We now use part (i). For each x ∈ X we may
choose rx > 0 such that Brx(x) contains only finitely many terms of this sequence (because otherwise
xn would be a convergent subsequence with limit x). Then, of course, we have X =

⋃
x∈X Brx(x).

Since X is compact only finitely many of the balls are needed to cover X; that is, there exist a finite
number of points yi ∈ X (for i = 1, 2, . . . , k, say) such that X =

⋃k
i=1Bryi

(yi). But each of these
balls contains only finitely many members of terms of the sequence. This means the sequence can only
have finitely many terms - a contradiction. [Note, for this to be a contradiction we actually need to
assume initially that xn contained infinitely many distinct points from X , but if this was not the case
there would be a point y repeated infinitely often. There is trivially a convergent subsequence in this
case, namely {y, y, y, y, . . .}.]

(iii) We prove this via contrapositive. Let x1 ∈ X and assume the covering property fails for some ϵ0 > 0.
Then, we can define the infinite sequence x1, x2, x3, . . . inductively by choosing xn+1 to be in the
complement of

⋃n
i=1Bϵ0(xi) (since {x1, x2, . . . , xn} is not a finite ϵ0-net then there exists a point in

the complement). But then it is clear that the sequence {xi} has no convergent subsequence since
d(xi, xj) ≥ ϵ0 for all i, j.

(iv) Suppose by contradiction that X is compact and that there does not exist such an ϵ > 0. Then for
all positive integers n there exists xn ∈ X with B1/n(xn) not contained in any of the open sets Ui.
Let xnm be a convergent subsequence and call the limit x. Now x ∈ Ui for at least one i ∈ I
since the Ui cover X . Also, Ui is open so there exists δ > 0 such that Bδ(x) ⊆ Ui. Then choose
m large enough so that d(x, xnm) < δ/2 and 1/nm < δ/2. Thus, if y ∈ B1/nm

(xnm) we have
d(y, x) ≤ d(y, xnm) + d(xnm , x) < δ/2 + δ/2 = δ. Hence B1/nm

(xnm) ⊆ Ui which is the desired
contradiction.

(v) Suppose X is compact and let {Ui : i ∈ I} be a collection of open subsets Ui ⊆ X with X =
⋃

i∈I Ui.
Let ϵ > 0 be a Lebesgue number for this cover (as in part (iv)). Let {x1, . . . , xn} be a finite ϵ-net (as
in part (iii)). Now for each k with 1 ≤ k ≤ n there exists an ik ∈ I with Bϵ(xk) ⊆ Uik . So we have

X =

k⋃
i=1

Bϵ(xi) ⊆
k⋃

i=1

Uik ⊆ X

and hence X =
⋃k

i=1 Uik .


