- 1 Show that for any complex z, (a) $\cos^2 z + \sin^2 z = 1$, (b) $\sin(2z) = 2 \sin z \cos z$
- 2 (a) By writing cos z = e^{iz}/2 (1 + e^{-2iz}) or otherwise, determine all complex z for which cos z = 0.
 (b) Solve the equation cosh z = 0 in complex numbers.
 - (c) Solve the equation $\sin z + \cos z = 0$ in complex numbers.
 - (d) Solve the equation $e^{\frac{1}{z}} = \frac{e^2}{\sqrt{2}}(1+i)$.
- 3 Write each of the following in x + iy form: (a) $4e^{i\pi/3} + \sqrt{2}$, (b) $\cos i$, (c) $\sin(\pi/2 + 2i)$, (d) $\sinh(i\pi/2)$, (e) $\sinh i + \cosh i$.
- 4 The real axis and the imaginary axis divide $\mathbb C$ into four quadrants as follows:

$$\begin{array}{c|c} \Omega_2 & \Omega_1 \\ \hline \Omega_3 & \Omega_4 \end{array}$$

By considering the modulus of the function, determine the images of $\Omega_1, \Omega_2, \Omega_3, \Omega_4$ under the exponential map $z \mapsto e^z$.

- 5 Using the principal branch of $\log z$, determine the x + iy form of (a) $\log (2i)$, (b) $\sqrt{2i}$, (c) i^i .
- 6 Give examples to illustrate that, in general, for complex numbers z, w,
 (a) log e^z ≠ z,
 (b) log(zw) ≠ log z + log w,

(c) $\sqrt{zw} \neq \sqrt{z}\sqrt{w}$.

Here all of the functions are defined with the principal branch of $\log z$.

- 7 (a) Determine 1^{1/4} if z^w is defined using the principal branch of logarithm.
 (b) What are the other possible values of 1^{1/4} if the branch is not principal?
- 8 (a) Determine the value of √(2i) according to the following three branches of the log function: (i) the principal branch; (ii) π < arg z < 3π; (iii) 4π < arg z < 6π.
 (b) For any non-zero z = re^{iφ} and any branch of log z for which √z is defined show that either √z = √re^{iφ/2} or √z = -√re^{iφ/2}.
 (c) More generally, for non-zero z = re^{iφ} and an integer n ≥ 1 show that there are exactly n possible "n-th roots of z", that is values of z^{1/n} for various choices of the branch of log z.
- 9 (a) From the definition of complex differentiability, show that f(z) = 1/z is complex differentiable for all non-zero complex z, and determine its derivative.
 (b) Verify the Cauchy-Riemann equations for f(z) = 1/z.
- 10 (a) Prove that f(z) = |z| is not complex differentiable anywhere.
 (b) Show that g(z) = zz = |z|² is differentiable at the origin and nowhere else. Find g'(0).
- 11 Find out where the following functions are differentiable and give formulae for their derivatives (from the lectures we already know that exp, trigonometric functions and polynomials are differentiable everywhere):

(a)
$$\frac{z \cos z}{1+z^2}$$
; (b) $\frac{e^z}{z}$; (c) $\frac{e^z+1}{e^z-1}$; (d) $\frac{\cos z}{\cos z+\sin z}$.

12 Define $f : \mathbb{C} \to \mathbb{C}$ by f(0) = 0, and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} \quad \text{for } z = x + iy \neq 0.$$

Show that f satisfies the Cauchy-Riemann equations at 0 but is not differentiable there. [Hint: consider what happens as $z \to 0$ along the line y = x and the line y = 0.]

13 At which points are the following functions differentiable?

(i) $f(z) = x^2 + 2ixy;$ (ii) $f(z) = 2xy + i(x + \frac{2}{3}y^3);$ (iii) $f(z) = x \cosh y + \sin(iy) \cos x;$ (iv) $f(z) = e^{-1/|z|^2} \ (z \neq 0), \ f(0) = 0.$

- 14 Find all complex differentiable functions defined on the whole of \mathbb{C} of the form f(z) = u(x) + iv(y) where u and v are both real valued.
- 15 Show that the principle branch of the complex logarithm function is complex differentiable at all points of $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$, and has derivative 1/z. [Hint: notice that if $z = x + iy \neq 0$ we can write

$$\operatorname{Arg}(z) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{if } x > 0, \\ \arctan\left(\frac{y}{x}\right) + \operatorname{sgn}(y)\pi & \text{if } x < 0, y \neq 0, \\ \operatorname{sgn}(y)\pi/2 & \text{if } x = 0, y \neq 0, \end{cases}$$

where sgn(y) is the standard sign function taking values ± 1 depending on whether y is strictly positive or strictly negative.]

16 Are the following functions f(z) = f(x+iy) complex differentiable? [Remember to justify your responses.] For those that are, determine the derivative f'(z).

(a)
$$f(z) = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2} i$$
, $(z \neq 0)$
(b) $f(z) = \sin(y) + i\cos(x)$,
(c) $f(z) = \overline{e^z}$,
(d) $f(z) = \tan(z) \quad [= \frac{\sin z}{\cos z}]$.

- 17 Let f(z) be a holomorphic function. Prove the following variants of the **Zero derivative theorem**, which says that, if any one of the following conditions hold on a (connected) open set X of complex numbers then f(z) is constant on X.
 - (i) f(z) is a real number for all $z \in X$.
 - (ii) the real part of f(z) is constant on X.
 - (iii) the modulus of f(z) is constant on X.

Remark: for instance, (i) shows that the functions |z|, Re z, Im z and arg z are not holomorphic.