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Q.1 Show that for any complex z,
(a) cos2 z + sin2 z = 1,
(b) sin(2z) = 2 sin z cos z

S.1 (a) LHS =
1

4
(eiz+e−iz)2+

1

4i2
(eiz−e−iz)2 =

1

4
(e2iz+2+e−2iz)− 1

4
(e2iz−2+e−2iz) =

1

4
(2+2) = 1.

(b) RHS =
2

4i
(eiz − e−iz)(eiz + e−iz) =

1

2i
(e2iz − e−2iz) = LHS.

Q.2 (a) By writing cos z = eiz

2 (1 + e−2iz) or otherwise, determine all complex z for which cos z = 0.
(b) Solve the equation cosh z = 0 in complex numbers.
(c) Solve the equation sin z + cos z = 0 in complex numbers.
(d) Solve the equation e

1
z = e2√

2
(1 + i).

S.2 (a) cos z = 1
2(e

iz + e−iz) = eiz

2 (1 + e−2iz). Since eiz is never zero, we see that cos z = 0 if and only if
1 + e−2iz = 0; i.e., if and only if eiπ−2iz = 1. From a result in class we see that this happens if and only if

iπ− 2iz = 2mπi, for m ∈ Z. That is, if and only if z = (m+
1

2
)π for m ∈ Z. Thus the only zeros of cos z

in the complex plane are those we already know about on the real axis.
(b) Either do it directly using the formula, or use part (a) together with the fact that cosh z = cos(iz). Either

way the answer is that the required solutions are z = i(m+
1

2
)π for m ∈ Z.

(c) We want to solve 0 = sin z + cos z = (1/2i)(eiz − e−iz) + (1/2)(eiz + e−iz) = (1/2)((eiz(1 − i) +
e−iz(1 + i)). So we need to solve e2iz = −1+i

1−i = −i = e−iπ/2; that is, e2iz+iπ/2 = 1. Hence the solutions
are 2iz + iπ/2 = 2mπi, for m ∈ Z, ie z = π(m− 1

4), m ∈ Z. Again, these are all on the real axis.
(d) We have z ̸= 0, so let w = 1/z. Then the equation becomes ew = e2 1+i√

2
= e2+iπ/4; thus ew−2−iπ/4 = 1

and w− 2− iπ/4 = 2mπ, for m ∈ Z. So, 1/z = 2+ i(2mπ+ π
4 ) and z = 1

2+i(2mπ+π
4
) =

2−i(2mπ+π
4
)

4+(2mπ+π
4
)2

for
m ∈ Z.

Q.3 Write each of the following in x+ iy form:
(a) 4eiπ/3 +

√
2, (b) cos i, (c) sin(π/2 + 2i), (d) sinh(iπ/2), (e) sinh i+ cosh i.

S.3 (a) 4eiπ/3 +
√
2 = 4 cos(π/3) + 4i sin(π/3) +

√
2 = (2 +

√
2)) + i2

√
3.

(b) cos i = 1
2

(
eii + e−ii

)
= 1

2

(
e+ 1

e

)
(= cosh 1).

(c) Using the usual trig formulae, sin(π/2 + 2i) = cos(2i) = cosh 2.
(d) Since sin(iz) = i sinh(z) we have sinh(iπ/2) = −i sin(−π/2) = i.
(e) In general, sinh z + cosh z = ez , so sinh i+ cosh i = ei = cos 1 + i sin 1.

Q.4 The real axis and the imaginary axis divide C into four quadrants as follows:

Ω2 Ω1

Ω3 Ω4

By considering the modulus of the function, determine the images of Ω1,Ω2,Ω3,Ω4 under the exponential
map z 7→ ez .

S.4 If z = x + iy then |ez| = ex and arg(ez) = y. Since x > 0 on Ω1, this region is mapped to points with
modulus greater than 1. In addition, all arguments are ‘hit’ as y ranges across the possitive reals. Thus, Ω1

is mapped to the exterior of the unit circle. Conversely, if w = reiθ (0 < θ ≤ 2π, r > 1) is outside this
circle then there exists x > 0 such that ex = r so that ex+iθ = reiθ. Since r + iθ is in Ω1 the map is onto.
Thus, the image of Ω1 is the whole of the exterior of the unit circle (covered an infinite number of times!).

Similarly, the image of Ω4 is also the whole of the exterior of the unit circle (covered an infinite number of
times): here, |ez| = ex > 1 and arg(ez) = y < 0 since x > 0 and y < 0. All angles must again be ‘hit’
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(except this time clockwise!). To see that the map is onto; if w = reiθ (−2π ≤ θ < 0, r > 1) we can always
find an x so that ex = r so ex+iθ = reiθ and x+ iθ is in Ω4.

For Ω2, |ez| = ex < 1 and arg(ez) = y > 0. All angles are ‘hit’ so the image is contained in the interior of
the unit circle. But, note that ex ̸= 0 for any x, so the origin is excluded. Thus, the image is the punctured
unit disc, i.e., the area inside the unit circle without the origin. The map is onto on his region since for
w = reiθ (0 < θ ≤ 2π, r < 1) there is x < 0 such that ex+iθ = reiθ and x+ iθ is in Ω2. A similar argument
works for Ω3 (the image of which is again the punctured unit disc).

Q.5 Using the principal branch of log z, determine the x+ iy form of
(a) log (2i), (b)

√
2i, (c) ii.

S.5 (a) For the principle branch, Log z = log |z|+ iArg(z) and hence Log(2i) = log 2 + i(π/2).
(b)

√
2i = (2i)1/2 = e(1/2) Log(2i) = e(1/2) log 2e(1/2)i(π/2) =

√
2 eiπ/4 = 1 + i.

(c) ii = eiLog i = eiiπ/2 = e−π/2.

Q.6 Give examples to illustrate that, in general, for complex numbers z, w,
(a) log ez ̸= z,
(b) log(zw) ̸= log z + logw,
(c)

√
zw ̸=

√
z
√
w.

Here all of the functions are defined with the principal branch of log z.

S.6 As usual, work with the principal branch of log z - the same examples work for every branch.
(a) For example, take z = 2πi. Then LHS = Log 1 = 0 ̸= 2πi.
(b) We want two points that ‘cross the branch cut’ when multiplied. For example, we could take z = w =
(−1 + i)/

√
2. Then zw = −i and so LHS = Log(−i) = log 1− i(π/2) = −iπ/2. But Log z = Logw =

log 1 + i3π/4 = i3π/4 so RHS= 2(i3π/4) = i3π/2.
(c) Again, we could take z = w = (−1 + i)/

√
2. Then

√
zw = e(1/2) log(−i) = e−(1/2)i(π/2) = e−i(π/4) =

(1− i)/
√
2. But,

√
z =

√
w = e(1/2)(i3π/4) = ei3π/8 and so RHS= ei3π/8ei3π/8 = ei3π/4 = (−1 + i)/

√
2.

[Note that the RHS recovers z (and so w), but the former gives a rotation of z by angle π. Therefore, we still
have (

√
zw)2 = (

√
z
√
w)2.]

Q.7 (a) Determine 11/4 if zw is defined using the principal branch of logarithm.
(b) What are the other possible values of 11/4 if the branch is not principal?

S.7 (a) Using the principle branch 11/4 = e(1/4) Log 1 = e(1/4)(log 1+i0) = e0 = 1.
(b) For other branches of log, say the kth branch logk(z) = log |z|+ i(Arg(z) + 2kπ), we have logk(1) =
log 1+i(0+2kπ) = i2kπ. Thus the possible values of 11/4 are = exp((1/4) logk(1)) = e(1/4)i2kπ = eikπ/2.
This gives 11/4 = ±1,±i (by taking k = 0, 1, 2, 3), as expected.

Q.8 (a) Determine the value of
√
(2i) according to the following three branches of the log function: (i) the

principal branch; (ii) π < arg z < 3π; (iii) 4π < arg z < 6π.
(b) For any non-zero z = reiϕ and any branch of log z for which

√
z is defined show that either

√
z =√

reiϕ/2 or
√
z = −

√
reiϕ/2.

(c) More generally, for non-zero z = reiϕ and an integer n ≥ 1 show that there are exactly n possible “n-th
roots of z”, that is values of z1/n for various choices of the branch of log z.

S.8 (a)(i) Using the principle branch,
√
(2i) = (2i)1/2 = e(1/2) Log(2i) = e(1/2)(log 2+i(π/2) = e(1/2) log 2eiπ/4 =

√
2eiπ/4

[
=

√
2

(
1√
2
+

1√
2
i

)
= 1 + i

]
.

(ii) This is the 1st branch of log, so log1(z). Similar to part (i), but this time log1(2i) = log |2i|+iArg(2i)+
i2π = log 2 + iπ/2 + i2π = log 2 + i5π/2, so the answer is e(1/2) log1(2i) =

√
2ei5π/4 = −1− i.

(iii) Note that this is not a branch defined in lectures. Here we choose arguments between 4π and 6π, so the
branch cut chosen is the positive real axis. We have arg(2i) = 9π/2 (the unique angle corresponding to 2i
that is between 4π and 6π). Thus, defining log(z) := log |z| + i arg(z) in the natural way for this branch
cut, the answer is e(1/2) log(2i) =

√
2ei9π/4 =

√
2eiπ/4 = 1 + i (as in part (a)(i)).
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(b) Let z = reiϕ. Then |z| = r and arg z = ϕ + 2πk for some k ∈ Z, depending on the branch of log z
used. Then for any branch

√
z = z1/2 = e

1
2
log z = e

1
2
(log r+i arg z) = e

1
2
log re

1
2
i(ϕ+2πk) =

√
re

iϕ
2 eiπk = ±

√
re

iϕ
2 ,

depending on whether k is even or odd [since eikπ = (eiπ)k = (−1)k].
(c) Similarly to (b),

z1/n = e
1
n
log z = e

1
n
(log r+i arg z) = e

1
n
log re

1
n
i(ϕ+2πk) = r

1
n e

iϕ
n e

2iπk
n .

Using that ez1 = ez2 if and only if z1 − z2 = i2πm (for some integer m ∈ Z), we see that r
1
n e

iϕ
n e

i2πk1
n =

r
1
n e

iϕ
n e

i2πk2
n if and only if i2πk1

n − i2πk2
n = i2πm, which holds if and only if k1−k2 = mn is a multiple of n.

It follows that there are exactly n distinct values of z1/n, namely n
√
r ·exp

(
iϕ
n + i2πk

n

)
for k = 0, . . . , n−1,

(for instance).

Q.9 (a) From the definition of complex differentiability, show that f(z) = 1/z is complex differentiable for all
non-zero complex z, and determine its derivative.
(b) Verify the Cauchy-Riemann equations for f(z) = 1/z.

S.9 (a) We have to investigate limh→0
f(z+h)−f(z)

h . For z ̸= 0 we have

lim
h→0

1/(z + h)− (1/z)

h
= lim

h→0
−h/(z(z + h))

h
= lim

h→0
− 1

z(z + h)
= − 1

z2
.

Thus f(z) = 1/z is complex differentiable for all non-zero complex z, and its derivative is −1/z2.
(b) For f(z) = 1/z = (x − iy)/(x2 + y2), it is straightforward to check that u(x, y) = x/(x2 + y2) and
v(x, y) = −y/(x2 + y2) satisfy the Cauchy-Riemann equations at all points other than x = y = 0. For
example,

ux =
1 · (x2 + y2)− x · (2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
and vy =

−1 · (x2 + y2)− (−y) · (2y)
(x2 + y2)2

=
y2 − x2

(x2 + y2)2
.

Q.10 (a) Prove that f(z) = |z| is not complex differentiable anywhere.
(b) Show that g(z) = zz = |z|2 is differentiable at the origin and nowhere else. Find g′(0).

S.10 (a) f(z) = u(x, y)+ iv(x, y), where u(x, y) =
√
x2 + y2 and v(x, y) = 0. Thus, for z ̸= 0, ux = x√

x2+y2
,

uy = y√
x2+y2

, vx = 0 and vy = 0. Thus f(z) is not complex differentiable for z ̸= 0, since both Cauchy-

Riemann equations do not hold at any of these points. [Alternatively, if you don’t want to use the C-R
equations, we can calculate the limits explicitly from the real and imaginary directions:

lim
h→0,h∈R

f(z + h)− f(z)

h
= ... = ux(x, y) + ivx(x, y) =

x√
x2 + y2

,

lim
h→0,h∈R

f(z + ih)− f(z)

ih
= ... =

1

i
(uy(x, y) + ivy(x, y)) = − iy√

x2 + y2
.

These never match (for z ̸= 0) so the limit in the definition of complex differentiability doesn’t exist. (Of
course, this is how we derived the C-R equations in the first place - it is the same thing).]

Notice finally that the partial derivatives don’t exist at z = 0, so it cannot be complex differentiable there.
Full details: for example, the real limit

ux(0, 0) := lim
h→0

u(h, 0)− u(0, 0)

h
= lim

h→0

|h|
h
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does not exist, since the limit from the RHS (h > 0) is 1, while from the LHS (h < 0) it is −1.

Thus f(z) is not complex differentiable anywhere.

(b) Here u(x, y) = x2 + y2 while v(x, y) = 0. Now

ux = 2x, vy = 0, uy = 2y, vy = 0,

and the Cauchy-Riemann equations only hold when x = 0 and y = 0; that is, where z = 0. So g is not
complex differentiable outside the origin.

At the origin we have

lim
h→0

g(0 + h)− g(0)

h
= lim

h→0

hh̄− 0

h
= lim

h→0
h̄ = 0.

Therefore g is differentiable at the origin with derivative g′(0) = 0. [Alternatively, note that the partial
derivatives are continuous at all points, so it follows from Theorem 3.5 that g is differentiable at z = 0, since
the Cauchy-Riemann equations hold there. We then have g′(0) = ux(0, 0) + ivx(0, 0) = 0.]

Q.11 Find out where the following functions are differentiable and give formulae for their derivatives (from the
lectures we already know that exp, trigonometric functions and polynomials are differentiable everywhere):

(a) z cos z
1+z2

; (b) ez

z ; (c) ez+1
ez−1 ; (d) cos z

cos z+sin z .

S.11 These are all combinations of standard complex functions that we already know are complex differentiable.
Hence, by the product/quotient rules they will be complex differentiable at all points where they are defined
(so wherever the denominators are non-zero). Their derivatives will then be given by the expected formulae:

(a) The function is complex differentiable everywhere except z = ±i. The derivative (by the product/quotient
rule) is cos z−z sin z

1+z2
− 2z2 cos z

(1+z2)2
.

(b) Complex differentiable everywhere but z = 0 with derivative ez

z (1−
1
z ).

(c) The function is defined, and hence is differentiable, at all points except z = i2nπ, n ∈ Z (by Proposi-
tion 1.9 part 3.). Moreover, using the quotient rule, the derivative is − 2ez

(ez−1)2
.

(d) It was verified on Sheet 1 Q17c that the denominator is zero precisely when z = π(m−1/4) for m ∈ Z.
For every z outside this set, the derivative exists and simplifies to −1

1+2 cos z sin z = −1
1+sin(2z) .

Q.12 Define f : C → C by f(0) = 0, and

f(z) =
(1 + i)x3 − (1− i)y3

x2 + y2
for z = x+ iy ̸= 0.

Show that f satisfies the Cauchy-Riemann equations at 0 but is not differentiable there. [Hint: consider
what happens as z → 0 along the line y = x and the line y = 0.]

S.12 First check the Cauchy-Riemann equations. We have

u(x, y) =
x3 − y3

x2 + y2
for (x, y) ̸= (0, 0), u(0, 0) = 0,

v(x, y) =
x3 + y3

x2 + y2
for (x, y) ̸= (0, 0), v(0, 0) = 0.
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Therefore at z = 0 we have

ux(0, 0) := lim
x→0

u(x, 0)− u(0, 0)

x
= lim

x→0

x3 − 0

x(x2 + 0)
= 1

vx(0, 0) := lim
x→0

v(x, 0)− v(0, 0)

x
= lim

x→0

x3 + 0

x(x2 + 0)
= 1

uy(0, 0) := lim
y→0

u(0, y)− u(0, 0)

y
= lim

y→0

0− y3

y(0 + y2)
= −1

vy(0, 0) := lim
y→0

v(0, y)− v(0, 0)

y
= lim

y→0

0 + y3

y(0 + y2)
= 1

and the Cauchy-Riemann equations hold.

But, now consider the limit definition of differentiability. A point h on the line y = x is always of the form
h = k + ik (for k real), so by letting z approach 0 along the line x = y we have that

lim
h→0

h=k+ik

f(0 + h)− f(0)

h
= lim

k→0

f(k + ik)− f(0)

k + ik
= lim

k→0

(1 + i)k3 − (1− i)k3

(k + ik)(k2 + k2)
=

2i

2(1 + i)
=

1 + i

2
.

However, approaching along the real axis (y = 0) we have

lim
h→0
h∈R

f(0 + h)− f(0)

h
= lim

h→0

(1 + i)h3 − (1− i)03

(h)(h2 + 02)
= 1 + i,

so the limit does not exist and the f isn’t differentiable at the origin. [Alternatively, notice that if f was
differentiable at z = 0, then its derivative there would be equal to f ′(0) = ux(0, 0) + ivx(0, 0) = 1 + i, by
Proposition 3.3, which does not match 1+i

2 .]

[Extra remark: note that this does not contravene the results of the lectures because the partials are not
continuous at the origin: For example ux(x, y) = x4+3x2y2+2xy3

(x2+y2)2
has limit 3/2 when approaching the origin

on the diagonal, which is not the same as ux(0, 0) = 1. ]

Q.13 At which points are the following functions differentiable?
(i) f(z) = x2 + 2ixy;
(ii) f(z) = 2xy + i(x+ 2

3y
3);

(iii) f(z) = x cosh y + sin(iy) cosx;
(iv) f(z) = e−1/|z|2 (z ̸= 0), f(0) = 0.

S.13 (i) Use Theorem 3.5 (valid as the partial derivatives are continuous); ux = 2x, vy = 2x, uy = 0, vx = 2y.
The first C-R equation is always satisfied, the second is satisfied only when y = 0. Thus f(z) is complex
differentiable on the real axis, and nowhere else.
(ii) Here u(x, y) = 2xy and v(x, y) = x+ 2

3y
3 and we have ux = 2y, vy = 2y2, uy = 2x, vx = 1. Since the

partial derivatives exist and are continuous everywhere, it follows from Theorem 3.5 that f(z) is complex
differentiable precisely where the C-R equations both hold. So, f is complex differentiable at z = x + iy
if and only if (ux =)2y = 2y2(= vy) and (uy =)2x = −1(= −vx). Hence, f is complex differentiable
when x = −1/2 and y is 0 or 1; in other words, f is complex differentiable precisely at the points −1/2 and
−1/2 + i, and nowhere else.
(iii) Here, since sin(iy) = i sinh y we have u(x, y) = x cosh y, v(x, y) = sinh y cosx. We have

ux = cosh y, vy = cosx cosh y, uy = x sinh y, vx = − sinx sinh y.

The first CR-equation holds only when cosx = 1, so x = 2nπ (for some n ∈ Z). The second C-R equation
then holds when sinh y = 0 or when x = sinx; that is, when y = 0 or 2nπ = sin(2nπ); that is, when
y = 0 or n = 0. Thus, the C-R equations hold on the imaginary axis (since they hold for all y when n = 0)
and at z = 2nπ for non-zero n ∈ Z (since they hold only for y = 0 when n ̸= 0). The partials are cts so
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Theorem 3.5 implies the function is complex differentiable at those points only.
(iv) For z ̸= 0 we have u(x, y) = e−1/(x2+y2) and v(x, y) = 0. We have vy = vx = 0 and

ux =
2x

(x2 + y2)2 exp(1/(x2 + y2))
, and uy =

2y

(x2 + y2)2 exp(1/(x2 + y2))
.

These never satisfy the C-R equations so f is not complex differentiable for z ̸= 0. When z = 0 we have

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

e−1/(hh̄)

h
= lim

h→0

h̄e−1/(hh̄)

hh̄
= lim

h→0
h̄ · lim

t→0

(
1

t

)
e−1/t = 0 · 0 = 0,

since exponential grows much faster than linear. Thus f is complex differentiable at the origin with derivative
f ′(0) = 0.

Q.14 Find all complex differentiable functions defined on the whole of C of the form f(z) = u(x) + iv(y) where
u and v are both real valued.

S.14 We assume that f is defined and complex differentiable on the whole complex plane. The Cauchy-Riemann
equations become:

ux(x) = vy(y), 0 = 0.

Since the left hand side of the first equation is a function of x alone, whereas the right hand side is a function
of y alone, they must be constant. In other words, there must be a real number a such that ux(x) = vy(y) = a
(since, for example, ux cannot change as y varies and vice versa). This implies that u(x) = ax + c,
v(y) = ay + d for real numbers c, d. Therefore f(z) = az + b, where a ∈ R and b = c+ id ∈ C.

Q.15 Show that the principle branch of the complex logarithm function is complex differentiable at all points of
C \ R≤0, and has derivative 1/z. [Hint: notice that if z = x+ iy ̸= 0 we can write

Arg(z) =


arctan (y/x) if x > 0,

arctan (y/x) + sgn(y)π if x < 0, y ̸= 0,

sgn(y)π/2 if x = 0, y ̸= 0,

where sgn(y) is the standard sign function taking values ±1 depending on whether y is strictly positive or
strictly negative.]

S.15 Let z = x + iy. For the principle branch we have Log z = log
√
x2 + y2 + iArg(z) = u + iv. We will

show that the partial derivatives exist and are continuous everywhere on C \ R≤0, and that they also satisfy
the C-R equations.

For all of the domain we have

ux(x, y) =
∂
∂x(x

2 + y2)1/2

(x2 + y2)1/2
=

1
22x(x

2 + y2)−1/2

(x2 + y2)1/2
=

x

x2 + y2
, uy(x, y) =

y

x2 + y2
.

The function sgn(y) is differentiable when y ̸= 0 (with derivative zero), so for z ∈ C \ R≤0 with x ̸= 0 we
have (in both of the situations ‘x > 0’ or ‘x < 0, y ̸= 0’ )

vx(x, y) =
1

1 + y
x
2

(
−y

x2

)
+ 0 =

−y

x2 + y2
, vy(x, y) =

1

1 + y
x
2

(
1

x

)
+ 0 =

x

x2 + y2
.

Thus, the C-R equations are satisfied, and the partial derivatives are continuous, when x ̸= 0. Furthermore,
when x = 0 (and so y ̸= 0) we have by l’Hopital that

lim
h→0+

Arg(h+ iy)− Arg(iy)
h

= lim
h→0+

arctan y
h − sgn(y)π2
h

= lim
h→0+

− y
h2

1 + ( yh)
2
= lim

h→0+

−y

h2 + y2
= −1

y
.
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Similarly,

lim
h→0−

Arg(h+ iy)− Arg(iy)
h

= lim
h→0−

arctan y
h + sgn(y)π − sgn(y)π2

h
= −1

y
.

Thus, vx(0, y) = − 1
y [=

−y
02+y2

]. In addition, it is easily verified that

vy(0, y) = lim
h→0

Arg(i(y + h))− Arg(iy)
h

= lim
h→0

sgn(y)π2 − sgn(y)π2
h

= 0

[
=

0

02 + y2

]
.

Hence the CR equations hold, and all partial derivatives are continuous at all points where Log z is defined.
Furthermore,

Log′(z) = ux(x, y) + ivx(x, y) =
x

x2 + y2
+ i

−y

x2 + y2
=

z

zz
=

1

z
.

Q.16 Are the following functions f(z)=f(x+iy) complex differentiable? [Remember to justify your responses.]
For those that are, determine the derivative f ′(z).
(a) f(z) =

x

x2 + y2
− y

x2 + y2
i, (z ̸= 0)

(b) f(z) = sin(y) + i cos(x),
(c) f(z) = ez̄ ,
(d) f(z) = tan(z) [= sin z

cos z ].

S.16 (a) For z ̸= 0 we have

ux =
y2 − x2

(x2 + y2)2
; vy =

y2 − x2

(x2 + y2)2
; uy =

−2yx

(x2 + y2)2
; vx =

2yx

(x2 + y2)2
.

All are continuous and the C-R equations hold, so f is differentiable for every z ̸= 0. The derivative is
f ′(z) = ux + ivx = (y2 − x2 + i2yx)/(x2 + y2)2.
(b) We have

ux = 0; vy = 0; vx = − sin(x); uy = cos(y).

Thus partial derivatives are continuous, but the C-R equations are only satisfied when cos y = sinx. Now
cos y = sinx ⇐⇒ cos y = cos(x − π

2 ) ⇐⇒ y = x − π
2 + 2nπ, n ∈ Z. The derivative there is

f ′(z) = ux + ivx = −i sin(x) = i cos(y).
(c) Simply notice that we have

f(z) = exp(z̄) = exp(x− iy) = ex(cos(−y) + i sin(−y)) = ex cos y − iex sin y = ex cos y + iex sin y,

which is just ez . So, f is just the exponential function and is complex differentiable everywhere.
(d) This is the quotient of two complex differentiable functions, so is differentiable everywhere except when
cos z = 0. By Sheet 1 Q17a these exceptions occur precisely when z = (m + 1/2)π for m ∈ Z. Indeed,
cos z = 1

2(e
iz + e−iz) = eiz

2 (1 + e−2iz). Since eiz is never zero, we see that cos z = 0 if and only if
1 + e−2iz = 0; i.e., if and only if eiπ−2iz = 1. From Proposition 1.9 (part 3.) in lectures we see that this
happens if and only if iπ − 2iz = 2mπi, for m ∈ Z. That is, if and only if z = (m + 1/2)π for m ∈ Z.
Thus the only zeros of cos z in the complex plane are those we already know about on the real axis. The
derivative elsewhere is f ′(z) = 1/(cos z)2 by the quotient rule.

Q.17 Let f(z) be a holomorphic function. Prove the following variants of the Zero derivative theorem, which
says that, if any one of the following conditions hold on a (connected) open set X of complex numbers then
f(z) is constant on X .
(i) f(z) is a real number for all z ∈ X .
(ii) the real part of f(z) is constant on X .
(iii) the modulus of f(z) is constant on X .

Remark: for instance, (i) shows that the functions |z|, Re z, Im z and arg z are not holomorphic.
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S.17 Write f(z) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) are real.
(i) If v(x, y) = 0, the C-R equations show that ux = vy = 0 and uy = −vx = 0. Then, u(x, y) and v(x, y)
must be constant, and hence f(z) is constant on X .
(ii) The C-R equations show that ux = vy = 0 and uy = −vx = 0. Again, u(x, y) and v(x, y) must be
constant, and hence f(z) is constant on X .
(iii) Differentiating |f |2 = u2 + v2 = c, with respect to x and y separately, we find that uux + vvx = 0 and
uuy + vvy = 0. In other words (

ux vx
uy vy

)(
u
v

)
=

(
0
0

)
.

Either the only solution is u = v = 0 (and so f is constant), or the determinant of the left hand matrix is
zero. In the latter case, we have uxvy − vxuy = 0. By the C-R equations we therefore have u2x + u2y = 0,
the only solution of which is ux = uy = 0. Thus u is constant. Since we are assuming u2 + v2 = c (is
constant), we now see that v is also constant, and the result follows.


